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Abstract 
Due to high cost of drug development and low likelihood that a drug will reach regulatory approval, 
an early development plan is needed to help determine the success of the drug development 
program.  This paper will examine the role of a statistician in developing an early high-level clinical 
development plan for generics and biosimilars with inputs from the structural and functional 
analysis, and non-clinical results.  Discussions will include the statistical tools and techniques 
used to overcome challenges in developing study design and estimating sample sizes to 
determine length, size and cost of clinical studies.  Finally, the paper will also touch on simulating 
the probability that the test drug will meet technical success based on pilot studies or published 
data from the originator drug.   
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Introduction 
Developing a new drug would take at least US$1 Billion.  And only 1 out of 10 new drugs will 
reach regulatory approval.  Development of a generic on the other hand would take about US$10 
Million with a success rate in reaching market authorization from phase 1 of at least 90%.  
Biosimilars development would take US$50 Million to US$100 Million due to complexity of the 
drug with a probability of success of around 78%.  Generics costs about 80% to 90% cheaper 
than originator drug while biosimilars costs around 20% to 30% cheaper.  A good drug 
characterization from pre-clinical analysis including structural and functional analysis and a 
strategic clinical plan are needed to develop a cost-effective alternative.  This paper will 
investigate the challenges usually encountered by statisticians in developing the plan and the 
techniques and tools used to overcome some of these challenges. 
 
Generics and Biosimilars  
US Food and Drug Administration (FDA) has defined a generic drug as a medication created to 
be the same as an already marketed brand-name drug in dosage form, safety, strength, route of 
administration, quality, performance characteristics, and intended use. These similarities help to 
demonstrate bioequivalence, which means that a generic medicine works in the same way and 
provides the same clinical benefit as its brand-name version. While a biosimilar is a biological 
product that is highly similar to and has no clinically meaningful differences from an existing FDA-
approved reference product. The development of generics and biosimilars is very different from 
that of a new drug.  Barbier, Declerck, et al., (2019) summarizes the types of information needed 
in drug development.  The bulk of data needed to show effectiveness and safety for a new 
medicine comes from clinical trials.  While in biosimilar development and similarly for generics, 
most of the data comes from analytical and functional analysis, and from preclinical studies.  In 
most cases where the generic medicine was shown to have no meaningful difference from the 
originator drug based on these data, a biowaiver can be applied even without conducting clinical 
trials.  Once approved, all indications of the originator drug apply to the generic or biosimilar 
product. 
 
 
 



Bioavailability (BA) and Bioequivalence (BE) 
The US FDA defines bioavailability as the rate and extent to which the active ingredient or active 
moiety is absorbed from a drug product and becomes available at the site of drug action. For drug 
products that are not intended to be absorbed into the bloodstream, bioavailability may be 
assessed by scientifically valid measurements intended to reflect the rate and extent to which the 
active ingredient or active moiety becomes available at the site of drug action. Bioequivalence on 
the other hand is the absence of a significant difference in the bioavailability between reference 
drug and in pharmaceutical equivalents or pharmaceutical alternatives when administered at the 
same molar dose under similar conditions in an appropriately designed study.  BE comparisons 
normally rely on (1) a criterion, (2) a confidence interval (CI) for the criterion, and (3) a 
predetermined BE limit. BE comparisons could also be used in certain pharmaceutical product 
line extensions, such as additional strengths, new dosage forms (e.g., changes from immediate 
release to extended release), and new routes of administration. In these settings, the approaches 
described in this guidance can be used to determine BE. Selected pharmacokinetic (PK) 
parameters and preset acceptance limits allow the final decision on bioequivalence of the tested 
products.  The area under the concentration time curve (AUC) is often used to measure the extent 
of absorption or total amount of drug absorbed in the body. The maximum plasma concentration 
or peak exposure (CMAX), and the time to maximum plasma concentration (TMAX) are 
parameters that are influenced by absorption rate.  Other parameters that are usually investigated 
are Clearance (CL), Elimination Half-life (t1/2), and Elimination Rate Constant (ke).   
 
A good discussion on the analysis of bioequivalence can be found in Chow and Liu (2009).  They 
note that regulations in most countries including United States, EU and Japan require only that 
evidence of average bioavailability be provided for approval of a generic drug.  For biosimilars 
clinical trials, PK/PD and clinical immunogenicity may be required.  In this paper, we will focus on 
statistician’s role in providing inputs in designing a plan for bioequivalence studies. 
 
Challenges 
Below are some of the challenges encountered when designing a clinical trial for a generic or a 
biosimilar. 

1. No regulatory guidance and limited references on the originator drug 
One of the challenges in designing a clinical trial with the objective of providing evidence 
of bioequivalence between the test drug and the reference drug is collating information on 
the reference drug.  Regulatory agencies require pharmaceutical agencies to divulge 
information relating to the safety and efficacy of their drug.  However, it is often a case 
that some of the information are redacted or information on the bioavailability of the drug 
is insufficient for designing a bioequivalence study.   

 
2. Designing for multiple markets/countries 

One consideration in creating a high-level plan is whether a single clinical trial will be 
sufficient for submissions in different markets.  There will be a need to check the regulatory 
guidance of each country.  There is also a need to determine whether the originator drug 
has a different formulation in each market.  In cases where there are substantial 
differences between reference drugs in two different markets, there will be a need to 
design two separate studies for each formulation or a single study comparing the test drug 
to both formulations. 
 

3. Drugs with long half-life 
In designing a crossover study, one concern is a possible carryover effect, wherein the 
drug administered in one period affects the results in the next period.  A washout period 



is usually included to control carryover effect.  But this will be difficult for drugs with long 
half-life as this will affect total duration of study and possibly increase patient dropout rate. 
 

4. Drug Toxicity 
Drug Toxicity should also be considered in the design of the study.  In most cases, 
regulatory agency will recommend the most sensitive population, which is usually healthy 
volunteers. For cytotoxic drugs, an in-patient study might be more appropriate.  The choice 
of population may influence the length of the study, drop-out rate and variability of the 
measures. 
 

5. Highly Variable Drugs 
Another consideration in designing a PK/PD study is when the reference drug is highly 
variable.  US FDA and European Medicines Agency (EMA) consider a reference drug as 
highly variable if the within-subject coefficient of variation is higher than 30%.  
Bioequivalence will be difficult to demonstrate unless the sample size is very large.   

 
6. First in Market Biosimilar 

Regulatory agencies may require safety and efficacy studies for first in market biosimilar.  
The approval may also go through an advisory committee to the regulatory agency.   

 
Other considerations in planning a clinical trial may include the use of sensitive populations for in-
patient studies, cost of doing a clinical trial for a certain market, and compliance to regulatory 
guidance.  To overcome some of these challenges from a statistical point-of-view, the following 
techniques are used. 
 
Statistical theories and techniques 
The following are techniques and theories used to work around the challenges or at least come 
up with estimates that will help in developing the clinical plan.   

1. Study Design 
a.  Pilot Study/ Sequential Study Design 

In cases where there is very limited information on the bioavailability of the reference 
drug, a pilot study or sequential study design can be used.   Pilot study is a study that 
can be used to validate analytical methodology, assess variability, optimize sample 
collection time intervals, and provide other information as described in the US FDA 
guidance (2003). Pilot study can be conducted in less than 12 subjects but there are 
inherent limitations doing this as the estimates may be unreliable for sample size 
planning. According to the US FDA guidance (2011), a minimum of 12 evaluable 
subjects should be included in any BE study. One advantage of conducting a pilot 
study is that BE may be claimed in the pilot study if stated as a procedure in the 
protocol and hence further study will not be necessary.   
 
In 2007 and 2010, EMA and US FDA published their guidance on adaptive clinical trial 
designs, respectively. Sequential design is an adaptive design that allows 
modifications to the trial’s design of statistical procedures during the study conduct 
without undermining the validity and integrity of the trial. In addition, it allows for 
premature termination of the trial if there are futility, efficacy or safety issues based on 
the interim results.  
 
As discussed in detail by Pocock (1977) and O’Brien and Fleming’s (1979), the main 
aim of the sequential design is to decrease the sample size. Interim analysis provides 



a chance to make appropriate decisions with regards to the allocation of resources for 
the clinical drug development.  
 
The methods by Potvin, D., et al. (2008) are the first validated frameworks of two stage 
sequential design in the context of BE wherein first initial group of subjects are treated 
and data are analyzed. One advantage of this approach is that in stage one, the trial 
can be stopped, and BE can be claimed. Otherwise, if bioequivalence is not 
demonstrated, additional subjects can be added and the results from both groups 
combined in final statistical analyses.  
 
Generally, in a group sequential trial, interim analyses are conducted on the available 
data at one or more intermediate stages, as determined by a priori decision rules to 
guide the adaptations. The flexibility of this design reduces the cost and increases the 
probability of success and time to completion of the clinical development plan. This 
can also translate to more ethical treatment of patients since there is a possibility of 
inclusion of fewer patients and hence avoiding unnecessary exposure of many 
subjects to the drug, and more efficient drug development.  The most common 
adaptive trials used include standard group sequential design, sample size re-
estimation, and drop-the-loser design (Jones, B. & Kenward, M.G., 2003 and Chow, 
S.C. & Pong, A., 2011). 
 
There are advantages using the adaptive design framework, and so do risks and 
challenges exist. Hence, adequate and careful planning is critical for the success of 
the trial.  

 
 b.  Replicate Design 

In a replicate design, a subject is randomly assigned to a sequence with at least 1 
treatment administered twice.  This design is also suggested for highly variable drugs 
to determine not just global intra-subject variability but also treatment intra-subject 
variability.  For biosimilars, a replicate design can also be used to set reference 
standards when there is limited public information on the reference drug.  A full 
replicate design is where the subjects either receive the reference or test drug in two 
periods (ex: RTR, TRT) or all subjects receive the reference or test drug in two periods 
(ex: RTRT, TRTR).  A partial replicate design is a 2-treatment, 3-sequence, 3-period 
design where the subject will receive the reference drug in two periods (TRR, RTR, 
RRT).   

 
2. Considerations for Highly Variable Drugs 

a. Evaluation of parameters 
Haidar S., et al. (2008) discussed the different approaches of regulatory agencies for 
highly variable drugs.  EMA recommends the use of expanding limits (ABEL) for CMAX 
given that the point estimate is within 80-125%.  Canada health applies the usual 80-
125% limit for the 90% CI of AUC and for the point estimate of CMAX.  US FDA 
proposes a scaled average bioequivalence (SABE) for both AUC and CMAX.  Laszlo 
and Lazlo (Tothfalusi and Endrenyi, 2012) detailed the steps for the EMA and FDA 
approaches. 
 

b.  Sample Size considerations 
High variability would mean larger sample sizes.  Crossover designs may be 
considered in designing a study provided that the drugs have short half-lives.  As 
discussed above, replicate design should be applied when using ABEL or SABE.  Also, 



larger absolute differences between the two logarithmic means can be noted in the 
various BE studies when the within-subject variation is higher.  Therefore, it is 
recommended that a 10% deviation between the means, i.e. a true GMR = 1.10, be 
considered during sample size determination. 

 
3. Pooled Variability and Upper Confidence Limit 

One of the most important considerations in designing a bioequivalence study is the 
sample size calculation and its associated power. Hence to ensure adequate power, 
finding the optimal sample size is very important. Sample sizes that are too small increase 
the type II error and may result in study failure; whereas sample sizes that are too large 
increase the cost of the study and unnecessarily exposing many subjects to the drug. 
According to the statistical guidelines of the US FDA and EMA, 80% or 90% power is 
recommended for bioequivalence studies. 

  
In sample size determination, information on the intra-subject coefficient of variation (intra-
CV) is needed for pharmacokinetic parameters since crossover designs are often utilized 
in bioequivalence (BE) studies. However, when different estimates for intra-CVs are 
produced in various studies with identical generic drugs, choosing the appropriate intra-
CV is a challenge. This is the case where pooled CV will be beneficial to have an 
appropriate estimate of CV. 

  
Patterson and Jones (2017) discussed a method of pooling data across studies.  Prior to 
pooling, variances must be weighted according to the studies' sample size and sequences. 
Larger studies tend to be more influential than smaller ones, and more sequences (with 
the same sample sizes) give higher CV. Of note, additivity of variances can be applied in 
the parametric model of log-transformed data. 

  
Steps in calculating pooled CV%: 

a) Calculate the variance from CV 
      𝜎𝜎2 = ln�𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖2  +  1� 

b) Calculate the total variance weighted by degrees of freedom (df)          

 
c) Calculate the pooled CV from the total variance 

 
d) Optionally calculate an upper (1-α) % confidence limit on the pooled CV 

(recommended α = 0.25) 

 
In cases where reliable estimates of the variability from relevant historical data to be used 
in estimating the sample size is not available, the common practice is to conduct a pilot 
study to generate an initial estimate of the effect size and intra-CV. Since pilot studies are 
usually conducted in small number of subjects, there is still uncertainty on the estimated 
CV, therefore, one conservative approach is to use the upper confidence limit of the 
estimated CV. Gould (1995) suggested to use the 75% upper confidence limit of the CV 
in determining the sample size of the main study. 

 
4. Probability of success 

Conducting a pivotal clinical trial requires a considerable amount of the company's 
resources.  Therefore, it is important to have an informed decision on whether to proceed 



or stop with conducting additional clinical trials early on during the drug development 
program. One of the key information that could drive the decision-making is the probability 
of success of a planned clinical trial.  The probability of success considers the uncertainty 
around the estimates of the hypothesis parameter.  Probability of success is sometimes 
called probability of study success, predictive probability of success, expected power, 
average success probability and unconditional power.  The most common approach is to 
assume a prior distribution on the hypothesis parameter based on available prior data and 
to take the average or expected value of the power.  Spiegelhalter, et al (2004) discussed 
the difference of classical power and classical power averaged on the prior distribution of 
the hypothesis parameter.  Liu, et al (2010) further developed expected power by 
incorporating uncertainty on the variance.  In case of a bioequivalence test, the uncertainty 
can come from the geometric mean ratio or on the variability of the parameter.  A useful 
function in the software R-language exppower.TOST gives the user the capability to 
determine the expected power by specifying whether the uncertainty comes from the 
GMR, the variability or both.   

  
Applications 
Below are some examples of study designs for a generic and for a biosimilar.  
 
Example 1 
The first example is an application of the pooled variability, upper confidence limit and highly 
variable techniques discussed above on a possible generic drug.  Data is from two pilot studies 
with 2-way crossover design on the bioavailability of the drug with only 6 healthy volunteers per 
study.  Mean square errors were computed below from the confidence limits.  Using the formulas 
for pooled variability, pooled CVs are 34.37% and 23.08% for AUC and CMAX, respectively.  
Given the small sample size, a 75% upper confidence limit is applied to the pooled variance giving 
43.9% and 29.21% for AUC and CMAX, respectively.  As the variability of the AUC is higher and 
assuming a 5% level of significance, 90% power and a geometric mean ratio of 5% from 1, a 
possible design is a 2-way crossover study with 106 evaluable subjects.   But given the high 
variability (CV > 30%), a possible more appropriate design is partial replicate 2-treatment, 3-
sequence, 3-period design (RRT-RTR-TRR).   Given the same assumptions but with larger range 
of geometric mean ratio of 10% from 1, it will only take 50 evaluable subjects to reach a power of 
90%.   

PK Parameter MSE CVintra N 
Country 1 AUC0-t 3.07 35.0% 6 

Cmax 2.89 25.0% 6 
Country 2 AUC0-t 3.03 33.0% 6 

Cmax 2.84 21.0% 6 
 
Example 2 
A single-dose, randomized, two-treatment, two-period crossover design was conducted between 
the test and reference narrow therapeutic index drugs (NTID). The objective of the study was to 
establish bioequivalence for all four analytes (A1, A2, A3 and A4). The CIs of the GMRs of PK 
parameters for A2, were not contained within the pre-specified BE limit, therefore the study failed 
to show bioequivalence. After several years, the FDA released a new guidance pertaining to BE 
demonstration specific to the active ingredient of the NTID, with a design that is totally different to 
the previously conducted trial, that is, a single-dose, four-way, fully replicated crossover design 
only on A3 was recommended. The statistician conducted simulation studies using the estimates 
of GMR and intra-CV of PK parameters for A3 obtained from the initial study. Results showed that 
if a clinical trial based on the new design recommended by FDA is conducted, the probability of 



demonstrating bioequivalence is high, for all simulation scenarios considered.  A sample of graphs 
are shown below to demonstrate that the design has at least 80% power across ranges of values 
for sample size, GMR or CV. 
 

N GMR CV Power 
22 92 to 108% 13 to 32% > 80% 
28 92 to 108% 10 to 36% > 80% 
36 92 to 108% 9 to 42% > 80% 

 
 
Example 3 
In one biosimilar PK/PD study conducted by Hospira/Pfizer, the formulation of the reference 
product in the US is different from that in the EU.  The study design used was a 3-treatment, 3-
period, 6-sequence design with a step-down or hierarchical analysis of PK and PD parameters.  
In the step-down analysis, the test drug is first compared to the US reference drug.  If test result 
is positive, the test drug is then compared to the EU reference drug.  This type of analysis is used 
to control type I error.   
 
Example 4 
Liu (2010) presented an application of Probability of Success on BE studies to be conducted on 
four formulations. Results of the simulations suggest that across the four formulations considered, 
one formulation attained the highest estimated probability of success equal to 76% (next highest 



had 46%) which could help decision-makers on identifying the formulation that will be included in 
further studies under the drug development program. 
 
Discussions 
As discussed in the introduction, generic or biosimilar drug development is done in stages starting 
on the structural and functional analysis, then moving to nonclinical and clinical studies.   Even 
prior to conclusion of non-clinical studies, high-level clinical plans are developed to determine the 
final cost of the drug development and the length of time to regulatory submission and market 
release. Overall drug development plan across the different stages will help management decide 
whether to go through with the drug development or not (Go/No Go decision).   A too conservative 
clinical plan will lead to higher study cost, longer length of the study and higher risk to patients. 
This plan can potentially lead to a No-Go decision.  A too optimistic plan may lead to an 
underpowered study and potential failure of the study.  Study failure will increase the cost and 
delay the development of the drug.  The statistician plays a critical role in developing these clinical 
plans working with a cross functional team of clinicians, pharmacologists, clinical managers and 
regulatory experts among others.   
 
Statisticians will need to review prior information on the reference drug and on the test drug to 
determine the most appropriate study designs and sample sizes.  Results from animal studies 
can be used as guidance on the possible toxicity of the drug.  And in some cases, human 
pharmacokinetic profiles are simulated using animal data (Mordenti, 1985) to get an idea on the 
drug’s bioavailability.  But in most cases, a clinical bioequivalence study is required to get approval 
if a biowaiver is not possible.  The statistician will also need to consider the uncertainties of the 
estimates from prior information along with other variabilities.  Some of the techniques and tools 
that can help the statistician assess these uncertainties to come up with a more robust study 
design are discussed in this paper.  Though the discussions in this paper are not comprehensive, 
the main objective is to give statisticians awareness on the usual challenges encountered and 
possible workarounds.  In coming up with most appropriate study design, the statistician needs 
to work with the pharmacologist and clinician to consider drug characteristics and toxicity.  The 
inputs for study design and sample size are then used by the project manager to come up with 
an estimate on the development cost and target release in the market. 
   
Finally, the main goal for developing biosimilars and generics is to provide patients with safe, 
effective and cheaper alternatives to drugs in the market.  By developing an accurate, robust and 
efficient clinical plan, the statistician along with the whole functional team, can help the company 
reach this goal. 
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