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Abstract 

The Philippines is one of the first countries in Southeast Asia to introduce the net-metering 
program which offers incentives to customers who produce their own supply and sell back the 
excess electricity to the grid. Distribution utilities (DUs), under the Renewable Act of 2008, are 
mandated to enter into a net-metering agreement with qualified end-users who will be installing 
renewable energy system. Despite this policy, majority of the end-users remain unregistered. A 
major DU in the country aims to identify these unregistered installations to adequately assess the 
power distributed through the network, monitor its effect to the grid stability, and assess possible 
revenue loss. The DU did a pilot study by collecting data via field inspection in target areas and 
manual examination of satellite imagery from maps available online. However, this proved to be 
tedious and inefficient, with only less than 1% hit rate. Acquisition of the latest advanced 
technologies, though effective, is very expensive. This paper aims to recognize the value of 
statistical machine learning (SML) in this situation. The DU’s customer data, along with the data 
collected in the pilot study, was employed in generating predictive models using Microsoft Azure 
Machine Learning Studio, a cloud-based machine learning tool. With the SML techniques and 
advanced data analytics implemented, results showed a significant increase in hit rate and so a 
more efficient inspection process. 
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1. Introduction 

The Republic Act No. 9513, also known as the Renewable Energy Act of 2008, was signed into 
law to uphold the Philippine government’s commitment to accelerate the utilization of renewable 
energy (RE) resources in the country. Under this law, subject to technical considerations and 
without discrimination and upon request by distribution end-users, the DUs shall enter into net-
metering agreements with qualified end-users who will be installing RE system. Net metering, as 
defined in the law, refers to a system, appropriate for distributed generation, in which a 
distribution grid user has a two-way connection to the grid and is only charged for his net 
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electricity consumption and is credited for any overall contribution to the electricity grid. DUs are 
authorized to provide the mechanisms for the physical connection and commercial arrangements 
necessary to ensure the success of the net-metering program. 

Since its enactment, there has been a slow but steady rise in the installation of solar 
photovoltaic (PV) panels in both commercial and residential premises. However, despite the 
policies established to regulate the utilization of RE system, majority of these installations are not 
yet registered under the net-metering program. Aside from regulatory issues, unregistered 
installations may also pose safety threats to the physical stability of the electricity grid if not 
properly integrated and monitored. 

To address the said risk while promoting the net-metering program, a study was conducted 
in 2017 by one major DU in the country to estimate the quantity of solar PV panel end-users and 
assess the effect of unregistered installations to the network. Data was initially collected through 
field inspections and manual rooftop examination based on satellite and aerial imagery from online 
public maps. For two months, three high-end subdivisions were monitored for residential services 
with visible solar PV panel installations (PVIs). Residential customers in high-end subdivisions 
were chosen as the target population as they have the means and higher likelihood to purchase and 
use solar PV panels. With only 25 unregistered PVIs confirmed out of 7,693 services examined, 
attaining only 0.32% hit rate, this system proved to be impractical to operationalize. Online maps 
are usually out-of-date and manual inspections are man-hour intensive. 

Advanced technologies and data analytics that use satellite and aerial imagery for detection 
could be procured. Although highly effective, it is extremely expensive. Besides, there have been 
some experiments using detection algorithms on satellite imagery (Malof, Hou, Collins, Bradbury, 
& Newell, 2015) that can also be performed but data specific to the DU’s franchise area was not 
yet available. It was also too tedious and unrealistic to manually create the dataset given the short 
timeline. The company then decided to tackle the problem with more cost-effective predictive 
analytics using their own customer data and available analytics tools to improve the inspection 
process and produce a more favorable hit rate than the physical approach. 

Predictive models were built, tested, validated, and deployed through Microsoft Azure 
Machine Learning Studio (Azure ML), a cloud-based drag-and-drop machine learning platform 
with ready-to-use library of algorithms and modules. In this study, the two-class logistic regression 
algorithm via Azure ML (Two-Class Logistic Regression), which adopts an elastic net 
regularization method (Zou & Hastie, 2005), was used to detect unregistered PVIs. Elastic net, 
while addressing data heterogeneity and preventing overfitting through regularization, is ideal in 
achieving model parsimony and interpretability which are necessary requirements to align with 
the business understanding and decision-making. A synthetic minority oversampling technique 
(SMOTE) (Chawla, Bowyer, Hall, & Kegelmeyer, 2002) was also considered in the experiment in 
handling the highly imbalanced data brought about by the small percentage of net metering 
customers and previously identified unregistered PVIs. 
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2. Data 

Data collected during the study were based on 30,421 residential customers living in high-end 
subdivisions under the DU’s jurisdiction. Subdivisions are considered high-end when there is 
enough number of residents with high monthly electricity consumption. Based on the 
recommendations of business experts within the company and after several variable selection 
procedures, the following customer information using a snapshot of the customer database and 
other data sources were obtained: (1) average kWh consumption (12-month period); (2) contracted 
capacity (kW); (3) age of service (year); (4) age of contract (year); (5) number of billing 
discrepancies; (6) number of (other) end-users within the same street; (7) proximity to the nearest 
end-user (kilometer); and (8) net-metering indicator. These variables were also expected to be 
present in the final model. 

The net-metering indicator indicates if a customer is registered under the net-metering 
program. To gather more information on and better understand the behavior and profile of solar 
PV panel users through an SML model, unregistered PVIs that were identified and monitored 
during the pilot study are tagged positive under the net-metering indicator. Hence, the net-metering 
indicator is instead modified to “end-user” indicator, referring to all customers with confirmed 
PVI, registered or unregistered. The final dataset contains 177 labelled end-users which represent 
only 0.58% of the target population. Summary measures (number of records and averages) are 
presented in Table 2.1. 

Table 2.1 Descriptive Summary 

End-User Indicator 1 0 

Number of records 177 30,244 
Average kWh consumption 1,612.0282 1,095.0542 
Average contracted capacity (kW) 25.8820 10.6770 
Average age of service (year) 18.4778 23.3082 
Average age of contract (year) 9.3515 19.3544 
Average number of billing discrepancies 0.0395 0.6055 
Average number of (other) end-users within the same street 0.2599 0.2237 
Average proximity to the nearest end-user (km) 0.2172 0.2908 

 

The distance variable is calculated using the haversine formula (Inman, 1835) based on the 
meter location of a customer and the nearest end-user, regardless of the end-user’s profile and 
location. Given the average distance, PVIs seem to emerge close to each other, with less than a 
kilometer apart. Although these installations are more clustered within an area, they may not 
necessarily be on the same street. This scenario is quite evident in Figure 2.1. Note that the variable 
for the number of (other) end-users within the same street does not include the observation in the 
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count when it is currently tagged as an end-user itself. Basically, this is to properly assess the 
influence of end-users to the customer. 

 

 
Figure 2.1 Density of PVIs of End-Users and Regular Customers 

 

 

3. Methodology 

The logistic regression is a generalized linear model (Nelder & Wedderburn, 1972) used in 
predicting the probability outcome of a binary response variable, and is commonly preferred due 
to its simplicity and interpretability. In this study, logistic regression is utilized via Azure ML to 
detect which among the customers are more likely to have PVIs based on their available 
information. 

Let the response variable 𝑌 be the end-user indicator, where 𝑌 = 1 for end-users and 𝑌 =

0 for regular customers. We define the logistic regression model as: 

 
log

P(Y = 1 | 𝐗)

P(Y = 0 | 𝐗)
= 𝛽 + 𝛽 𝑋 + ⋯ + 𝛽 𝑋  (3.1) 

The model in equation (3.1) regresses for the log odds given a set of predictors 𝐗 =

(𝑋 , 𝑋 , … , 𝑋 ) which signifies the variables mentioned in the previous section and 𝛃 =

(𝛽 , 𝛽 , … , 𝛽 ) which represents the regression coefficients. The 𝛃 estimates are usually obtained 
by maximizing the likelihood function: 
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L(𝛃, 𝐗, 𝐘) = P(Y = 𝑦  | 𝐗 =  𝒙 ) (3.2) 

=
exp (𝛽 + 𝛽 𝑥 + ⋯ + 𝛽 𝑥 )

1 + exp (𝛽 + 𝛽 𝑥 + ⋯ + 𝛽 𝑥 )

1

1 + exp (𝛽 + 𝛽 𝑥 + ⋯ + 𝛽 𝑥 )
;; 

 (3.3) 

Azure ML’s two-class logistic regression model automatically standardizes the variables 
using a min-max normalization method. To prevent overfitting, the algorithm applies a naïve 
elastic net regularization framework (Zou & Hastie, 2005) by penalizing the earlier objective 
function: 

 ℓ(𝛃, λ , λ , 𝐗, 𝐘) = ℓ(𝛃, 𝐗, 𝐘) + λ |𝛃| + λ |𝛃| (3.4) 

where 

 
|𝛃| = 𝛽  (3.5) 

 
|𝛃| = |𝛽 | (3.6) 

Equations (3.5) and (3.6) are 𝐿  and 𝐿  penalties, respectively. The ℓ(𝛃, 𝐗, 𝐘) term in 
equation (3.4) is the corresponding negative log-likelihood function of equation (3.2). The 𝛃 
estimates are computed by implementing an L-BFGS optimization procedure (Nocedal, 1980). 
Once the estimates are calculated, the model can be written as: 

 log
P(Y = 1 | 𝐗∗)

P(Y = 0 | 𝐗∗)
= 𝛽 + 𝛽 𝑋∗ + ⋯ + 𝛽 𝑋∗ (3.7) 

 
P(Y = 1 | 𝐗∗)

P(Y = 0 | 𝐗∗)
= exp 𝛽 + 𝛽 𝑋∗ + ⋯ + 𝛽 𝑋∗  (3.8) 

where 𝐗∗ = (𝑋∗, … , 𝑋∗) represents the normalized explanatory variables and 𝛃 = (𝛽 , 𝛽 , … , 𝛽 ) 
are the estimated model coefficients. The penalized logistic regression model can be interpreted 
using the equation (3.8) which solves for the odds. The effect of each coefficient is determined by 
means of ceteris paribus, or holding constant all other predictors in the model. Probability score 
is calculated similarly by using the estimated odds.  

To address data imbalance, with the end-users representing less than 1% of the target 
population, oversampling and undersampling techniques are considered in building the working 
dataset. The minority class is oversampled through a synthetic minority oversampling technique 
(SMOTE) while the majority class is undersampled through a simple random sampling process. 
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Essentially, SMOTE attempts to generate artificial observations based on the characteristics of the 
original minority samples (Chawla, Bowyer, Hall, & Kegelmeyer, 2002). The sampling techniques 
are performed only after randomly splitting the data to train and test dataset stratified by the end-
user indicator. Hyperparameter tuning is also implemented to determine the model with the best 
fit. Figure 3.1 presents the difference between the original data and the analysis data after SMOTE. 

 

 
Figure 3.1. Implementation of SMOTE on actual dataset 

 

4. Results and Discussion 

The training dataset, generated through sampling techniques, has the following information in 
Table 4.1. Note that the engineered data does not deviate much from the original dataset in Table 
2.1. However, SMOTE seems to have difficulty in fabricating the information on the number of 
(other) net metering customers within the same street, most likely due to the low variability in the 
feature and the rarity of confirmed end-users in general. Overall, the sampling techniques 
performed well in balancing the data. 

Table 4.1 Data Summary with SMOTE and Random Sampling 

End-User Indicator 1 0 

Number of records 1,984 2,117 
Average kWh consumption 1,658.8034 1,079.4119 
Average contracted capacity (kW) 25.9112 10.8091 
Average age of service (year) 17.6708 23.3962 
Average age of contract (year) 9.7434 19.3790 
Average number of billing discrepancies 0.0050 0.3042 
Average number of (other) end-users within the same street 0.0938 0.2362 
Average proximity to the nearest end-user (km) 0.1975 0.2856 
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The model is subject to 84.10% Area Under the Curve (AUC), 75.47% true positive rate, 
and 73.68% true negative rate on the test data using 50% probability threshold. Below is the final 
penalized logistic regression model. 

log
(   )

(   )
 = 1.27313 

+ 5.17663 (Average KWh Consumption) 
+ 5.65823 (Contracted Capacity) 
- 0.30564 (Age of Service) 
- 2.91369 (Age of Contract) 
- 6.20447 (Number of Billing Discrepancies) 
- 2.87240 [Number of (Other) End-Users Within the Same Street] 
- 5.06105 (Proximity to the Nearest End-User) 

(4.1) 

 
The result of the detection model substantiated the customer profile described in the data 

summary in Section 2. From equation (4.1), it can be ascertained that the average kWh 
consumption and contracted capacity have positive influence on the probability of a customer 
using solar PV panels. Table 4.2 displays the effect of each variable to the odds of PVI assuming 
all other variables are held constant. A 100-kWh increment in the average energy usage means a 
2.45% increase in the odds of PVI while an additional kW in the contracted capacity causes a 
2.06% increase. There is a 0.62% and 7.5% decrease in the odds for each year older in the service 
age and contract age, respectively. A newer contract or a more recently created service indicates a 
very much higher probability that a customer is an end-user. 

As observed earlier, energy usage fluctuation is quite uncommon in high-end subdivisions. 
So, it is somehow sensible that an increase in the number of billing discrepancies leads to a 46.23% 
decrease in the customer’s odds of having PVI. Customers with billing discrepancy records are 
therefore expected to have lower probability scores due to this reason. 

Table 4.2 Influence of Each Variable on the Odds of PVI 

Variables (unit) Factor 

Average kWh consumption (100 kWh) 1.02447 
Contracted capacity (1 kW) 1.02064 
Age of service (1 year) 0.99379 
Age of contract (1 year) 0.93027 
Number of billing discrepancies (1 count) 0.53770 
Number of (other) end-users within the same street (1 count) 0.38386 
Proximity to the nearest end-user (100 m) 0.76291 

It was initially established that PVIs normally appear close together in an area but it is quite 
uncommon that they are all on the same streets. The model says that a 100-meter nearer to the 
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closest end-user raises the odds of PVI by 31.08%. This is high given the rarity of end-users, and 
this might also be the reason why an increase in the number of end-users on the same street 
decreases the odds of PVI by 61.61%, which is also quite extreme. 

In summary, high odds of PVI is expected when a customer is relatively young, high-
consuming, with consistent usage, and/or is closely surrounded by solar PV panel users. 

 

5. Application 

During a six-month post-study validation period, the probability scores of customers who had 
registered under the net-metering program following the experiment were examined. A high recall 
(true positive rate) was attained at 79.17% and 33.33% based on 50% and 80% threshold, 
respectively. Figure 5.1 displays the actual recall for each probability score threshold. 

 Finally, to make the field inspection feasible and to enhance the precision rate, the DU 
decided to set an 80% threshold to trim down the list of identified customers who are more likely 
to own unregistered PVIs. The final model (4.1) tagged 1,042 regular customers as possible end-
users, excluding those that had already registered after the experiment’s data gathering. These 
observations, based on the approximate meter locations, were then plotted in a map of the franchise 
area via a web-based dashboard used by the company so the business sectors could immediately 
tell which areas have high density of potential unregistered PVIs. 

 
Figure 5.1. Post-study validation: recall by probability score threshold 

The business sectors nominated PVI-dense subdivisions in major areas of the franchise and 
assembled inspection teams to validate the list of potential end-users. There were 225 residential 
customers tagged for field verification. 

From Table 5.1, the result of the inspection based on advanced data analytics was 
remarkable. The study attained a significant hit rate which is 35.56 times better than the outcome 
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of the manual search. Furthermore, there was a 96.55% improvement in the man-hours spent on 
field inspection. 

Table 5.1 Field Inspection Results 

Approach 
Services 

Inspected 
Unregistered 

PVIs 
Hit Rate Duration 

Manual Search 7,693 25 0.32% 348 hours 
Analytics 225 26 11.56% 12 hours 

Using the probability scores produced by the SML model, the business sectors easily 
determined which areas to focus on and who among the customers to pay attention to. With a more 
efficient scheme to detect unregistered PVIs, the inspection efforts were optimized and a more 
substantial hit rate was achieved. 

 

6. Conclusion 

This study confirmed several advantages of utilizing advanced data analytics in detecting 
unregistered PVIs. The utility company established a more effective and workable inspection 
process with better results than the conventional, manual approach in terms of precision, work 
hours and labor cost. The results of the analysis not only corroborated the effect of each variable 
identified by the business experts but also determined the extent of their impact (e.g. proximity 
seems to be the major factor in detecting PVIs). With more end-users verified, the company could 
devise strategies to control the energy demand in areas with high density of PVIs, ensure network 
stability, and encourage electrical safety. It could produce better estimates on possible revenue loss 
from the foregone energy to alleviate the impact on sales and reassess its business model and 
capital investments. This study and the variables considered in the analysis may also be used as a 
guide for the company in building other new models on common business concerns, such as fraud 
detection, customer segmentation, and preventive maintenance. 

 Given the challenges in detecting PVIs, along with the current trend in RE and budding 
familiarity with solar energy usage, constant model refinement is recommended to guarantee a 
reliable predictive capability. With newly confirmed end-users added to the data, the model can 
get better in predicting unregistered PVIs. Additional variables commonly associated with any 
business (e.g. payment behavior) can be considered in the succeeding model iterations. 

 

 

 



10 
 

7. References 
 

Chawla, N., Bowyer, K., Hall, L., & Kegelmeyer, P. (2002). SMOTE: Synthetic Minority Over-
sampling Technique. Journal of Artificial Intelligence Research, 16, 321-357. 
doi:10.1613/jair.953 

Inman, J. (1835). Navigation and Nautical Astronomy: For the Use of British Seamen (3 ed.). 
London, UK: W. Woodward, C. & J. Rivington. 

Malof, J., Hou, R., Collins, L., Bradbury, K., & Newell, R. (2015). Automatic solar photovoltaic 
panel detection in satellite imagery. 2015 International Conference on Renewable Energy 
Research and Applications (ICRERA), (pp. 1428-1431). Palermo. 
doi:10.1109/ICRERA.2015.7418643 

Nelder, J., & Wedderburn, R. (1972). Generalized Linear Models. Journal of the Royal 
Statistical Society. Series A (General), 135(3), 370-384. doi:10.2307/2344614 

Nocedal, J. (1980, July). Updating quasi-Newton matrices with limited storage. Mathematics of 
Computation, 35(151), 773–782. doi:10.2307/2006193 

Two-Class Logistic Regression. (n.d.). Retrieved from Microsoft Azure: 
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/two-
class-logistic-regression 

Zou, H., & Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of 
the Royal Statistical Society. Series B (Statistical Methodology), 67(2), 301–320. 
Retrieved from https://www.jstor.org/stable/3647580 

 

 


