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ABSTRACT 

 
The estimation procedure of a spatiotemporal model with varying frequencies rely 

on the assumption of constant covariate effect across spatial units and time points. With 
this, a nonparametric procedure based on the bootstrap is proposed to validate the 
assumption of constant covariate effect across time points and locations. The test 
makes use of distances from limits of the estimated confidence interval of the covariate 
effect parameter. Simulation study shows that the size of the proposed test is consistent 
to be less than the nominal level of significance under different scenarios. The power of 
the test increases to 1.0 as alternative parameter values become more distant from the 
common value, and similarly, as the frequency of spatial units / time points with 
alternative parameter values increase. Sensitivity of the test decreased under the 
presence of large errors in the model, especially when the autocorrelation of error terms 
is high. 

 
Keywords: spatiotemporal model, bootstrap, nonparametric, confidence interval 

 

 

 
1. Introduction 

A spatiotemporal model is a statistical representation of data sampled from specific 
locations over a period of time that characterizes their exogenous, spatial, and temporal 
dependencies (Cressie & Majure, 1997). The goal of this statistical modelling effort is 
spatiotemporal prediction, which is achieved by systematically modelling the relationship 
between a response variable and potential explanatory variables, while accounting for spatial 
dependence and temporal dependence simultaneously (Zhu, Huang, & Wu, 2005).   

Malabanan and Barrios (2017) postulated a semiparametric spatiotemporal model, 
motivated by agricultural systems, with data measured at varying frequency, i.e., some variables 
are measured at higher time frequency than others. Unlike common approaches where 
aggregates or interpolations are used to create a set of covariates with the same time frequency, 
the differences in frequency is preserved to avoid loss of information. The proposed model 
optimizes utilization of information from variables measured at higher frequency by estimating 
its nonparametric effect on the response through the backfitting algorithm. The same model was 
used estimate corn yield per province in the Philippines, using vegetation index, amount of 
rainfall, and amount of fertilizers as predictors. Extensive simulation studies support the 
optimality of the model over simple generalized additive model (GAM) with aggregation of high 
frequency data. The simulation study, however, was designed to meet the assumptions of the 
model, namely: (1) constant nonparametric component effect across units and across time, (2) 
constant parametric component effect across units and across time, (3) constant neighborhood 
variable effect across units and across time, and (4) constant temporal effect across units. 
Hence, the gain in precision over GAM is not guaranteed if there are violations in the model. 

It is possible that dynamic behavior of covariates may violate the model assumptions 
since the study of crop yield makes use of covariates which may vary across locations and time 
points. For instance, agricultural production throughout the year may be similar in provinces with  
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the same rainfall conditions; soil quality and terrain tend to be similar in neighboring provinces, 
and agricultural programs (e.g. fertilizer application) vary over time for each province. Hence, the 
assumptions need to be tested first to facilitate correct interpretation of the estimates of 
Malabanan-Barrios model. 

This paper aims to develop a nonparametric bootstrap-based hypothesis testing 
procedure to validate the assumption of the constant covariate effect in the spatiotemporal model 
with mixed frequencies. This validation procedure not only clarifies that model requirements are 
met, but also justifies the choice of the model for the specific data set used. 

 

 
2. Spatiotemporal Model 

An estimation procedure for an additive spatiotemporal model with mixed frequencies was 
proposed by Malabanan and Barrios (2017). The nonparametric effect of the higher frequency 
variable to the response was estimated using the backfitting algorithm. The following model was 
used: 

𝑌𝑖𝑡 = ∑ 𝑓(𝑋𝑖𝑡𝑘
)

𝐾

𝑘=1

+  𝛽𝑍𝑖𝑡 + 𝛾𝑊𝑖𝑡 + 𝜀𝑖𝑡 

𝜀𝑖𝑡 = 𝜌𝜀𝑖,𝑡−1 + 𝑎𝑖𝑡 ,  |𝜌| < 1,  𝑎𝑖𝑡 ~𝐼𝐼𝐷(0, 𝜎𝑎
2),  𝑖 = 1, … , 𝑛; 𝑡 = 1, … , 𝑇; 𝑘 = 1, … , 𝐾 

where 𝑌𝑖𝑡 refers to the response in unit 𝑖 at time 𝑡, 𝑋𝑖𝑡𝑘
 is the covariate measured at higher 

frequency of unit 𝑖 at subtime 𝑘 of time 𝑡, 𝑓(∙) is any continuous function of 𝑋𝑖𝑡𝑘
, 𝑍𝑖𝑡 is the 

covariate measured in the same frequency as response in spatial unit 𝑖 at time 𝑡, 𝑊𝑖𝑡 refers to 
variable the neighborhood system where spatial unit 𝑖 belongs at time 𝑡, and 𝜀𝑖𝑡 is the error term 
for spatial unit 𝑖 at time 𝑡, assumed to be independent and identically distributed (i.i.d), with mean 
zero. 

The following steps constitute the algorithm used to generate the estimates of the 
spatiotemporal model with mixed frequencies: 

Step 1. Estimate non-parametric component using spline smoothing. Then calculate 𝑒𝑖𝑡
(1)

 to 

isolate the spatial and temporal components of the model. 

𝑒𝑖𝑡
(1)

=  𝑦𝑖𝑡 − ∑ 𝑓(𝑋𝑖𝑡𝑘
)̂

𝐾

𝑘=1

 

Step 2. Using 𝑒𝑖𝑡
(1)

 from Step 1, estimate 𝛽 and 𝛾 per spatial unit using least squares. The final 

estimates 𝛽̂ and  𝛾  are taken as the average of 𝛽̂𝑖 and  𝛾𝑖 per spatial unit. Calculate 𝑒𝑖𝑡
(2)

 

to isolate the temporal components of the model. 

𝑒𝑖𝑡
(2)

=  𝑦𝑖𝑡 −  (∑ 𝑓(𝑋𝑖𝑡𝑘
)̂

𝐾

𝑘=1

+ 𝛽̂𝑍𝑖𝑡 + 𝛾𝑊𝑖𝑡) 

Step 3. Using 𝑒𝑖𝑡
(2)

 estimate temporal effect 𝜌. 𝑒𝑖𝑡
(2)

 is modeled as AR(1) to estimate 𝜌𝑖 per 

spatial unit. 𝜌̂ is taken as the average of 𝜌̂𝑖s. 
Step 4. Calculate new observations 

𝑦𝑖𝑡
𝑛𝑒𝑤 = 𝑦𝑖𝑡 − 𝜌̂𝑒𝑖,𝑡−1

(2)
 

Step 5. Iterate process 1 to 4. Use the updated values of the dependent variable (𝑦𝑖𝑡
𝑛𝑒𝑤) for 

steps 1 and 2. To update the residuals in step 3, use the original values (𝑦𝑖𝑡). Repeat 
step 4 using the updated estimates of the error terms and original values (𝑦𝑖𝑡). The 
iteration continues until there is minimal change in the MSPE (<1%) 
 
The proposed estimation procedure for spatiotemporal model with varying frequency of 

covariates produced better predictive ability over ordinary generalized additive model (GAM) 
under high rate of occurrence (K=12) of the higher frequency variable, and when the temporal 
correlation is high (𝜌=0.9), regardless of the functional form of the more frequent covariate. 
These results support the value of the methodology in optimizing the use of unaggregated level 
of the higher frequency covariate in explaining the variability of the response. However, it was 
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observed that the model did not show better predictions when the contribution of the higher 
frequency covariate to the response dominates the other predictors with lower frequency. 
Prediction errors of the model are larger when there is misspecification in the data (m=10) as 
compared to models without misspecification error (m=1). 
 
 

3. Testing for Constant Covariate Effect 

The following algorithm is proposed to test the assumptions of constant covariate effect 
across locations in a spatiotemporal model with mixed frequencies by Malabanan and Barrios 
(2017).  

Let 𝑦𝑖𝑡 be the response in location 𝑖 and time point 𝑡, 𝑖 = 1, … , 𝑁 and 𝑡 = 1, … , 𝑇. Suppose 
𝛽𝑖 refers to the coefficient of covariate 𝑍𝑖𝑡 at location 𝑖, the following hypotheses are tested: 

H0: 𝛽𝑖 = 𝛽   ∀𝑖     

H1: 𝛽𝑖 ≠ 𝛽  𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑖  
where the null hypothesis of the test can be stated as: all spatial units have the same covariate 
effect, with the alternative hypothesis: not all spatial units have the same covariate effect. 
 
 
Algorithm 

1. Estimate the model 𝑦𝑖𝑡 = ∑ 𝑓(𝑥𝑖𝑡𝑘
)𝐾

𝑘=1 +  𝛽𝑧𝑖𝑡 + 𝛾𝑤𝑖𝑡 + 𝜀𝑖𝑡 by fitting the algorithm of 

Malabanan-Barrios model. 
2. From the estimates in step 1, calculate the residual associated with the parameter of 

interest. For instance, to isolate the covariate effect, generate, generate the residuals 
by:  

𝑒𝑖𝑡
𝛽

=  𝑦𝑖𝑡 −  (∑ 𝑓(𝑋𝑖𝑡𝑘
)̂

𝐾

𝑘=1

+ 𝛾𝑊𝑖𝑡) 

3. Use the calculated residual as response 𝑒𝑖𝑡
𝛽

=  𝑦𝑖𝑡
∗  to estimate the regression model: 

𝑦𝑖𝑡
∗ = 𝛽𝑖𝑧𝑖𝑡 + 𝜀𝑖𝑡 ,      𝑖 = 1, .  .  . , 𝑁,       𝑡 = 1, . . . , 𝑇 

4. In each spatial unit, generate 𝑘 bootstrap samples of 𝑇 pairs (𝑧𝑖𝑡 , 𝑦𝑖𝑡
∗ ) from the original 𝑇 

pairs of observations.  Let 𝑆𝑖𝑝 represent the pth bootstrap sample from spatial unit 𝑖 , 

where  𝑝 = 1, 2 , .  .  . , 𝑘.  
5. For each bootstrap sample in spatial unit 𝑖, estimate model in step 3 using ordinary 

least squares.  
6. Compute the bootstrap standard error of the estimated spatial parameter 𝛽𝑖 for each 

spatial unit using the 𝑘 bootstrap estimates 𝛽̂𝑖𝑝
∗  generated in step 4.  

𝜎̂
𝛽̂𝑖

∗ = [
1

𝑘 − 1
∑ (𝛽̂𝑖𝑝

∗ − 𝛽̂𝑖𝑝
∗̅̅ ̅̅ )

2
𝑘

𝑝=1

]

1/2

, 𝛽̂𝑖𝑝
∗̅̅ ̅̅ =

1

𝑘
∑ 𝛽̂𝑖𝑝

∗

𝑘

𝑝=1

 

7. Construct the (1 − 𝛼) ∗ 100% normal-approximation confidence interval of the regression 
parameter 𝛽𝑖 in each spatial unit. The confidence limits are as follows: 

𝛽𝑖̂ ± 𝑧𝛼
2

𝜎̂
𝛽̂𝑖

∗  

8. Compute the test statistic for the test using the following procedure: 
i. Using the CIs generated from step 7, calculate the distance between the closest 

limits of all possible nonoverlapping CI pairs using the function 𝑑𝑙 below. Let U 
and L represent the upper limit and lower limit respectively of the confidence 
interval.  

𝑑𝑙 = {
min(|𝑈1 − 𝐿2|, |𝐿1 − 𝑈2|) , 𝑖𝑓 𝐶𝐼 𝑝𝑎𝑖𝑟 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑜𝑣𝑒𝑟𝑙𝑎𝑝 

0,                                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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where 𝑙 = 1,2, . . . , (𝑁
2

); there are (𝑁
2

) pairs in total. 

ii. The test statistic of the test is the mean of the distances: 

𝐷 =
1

(𝑁
2)

 ∑ 𝑑𝑙
(𝑁

2 )

𝑙=1   

9. Create the null distribution by replicating steps 1 to 8 using data with homogeneous 
covariate / spatial effects across spatial units. With 200 iterations, create an approximate 
distribution of the test statistic under the null hypothesis. 

10. Generate the (1 − 𝛼)𝑡ℎ percentile value (critical value) of the simulated null distribution 
of the test statistic in step 9. 

11. Reject the null hypothesis if the test statistic in step 8 is greater than the critical value at 
(𝛼 ∗ 100)% level of significance. 

 
The algorithm above can be modified to test the assumption of constant covariate effect 

across time. Instead of creating parameter estimates and confidence intervals for each spatial 
unit, the estimates and intervals can be generated for each of the 𝑇 time points. The bootstrap 
resamples are generated from the 𝑁 spatial units. And the testing procedure proceeds in the 

same manner, i.e., suppose 𝛽 refers to the covariate effect, the following hypotheses are tested: 

H0: 𝛽𝑡 = 𝛽   ∀𝑡     

H1: 𝛽𝑡 ≠ 𝛽  𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑡  

where the null hypothesis of the test can be stated as: all time points have the same covariate 
effect, with the alternative hypothesis: not all time points have the same covariate effect. 
 
 
 
4. Simulation Study 

The proposed nonparametric hypothesis testing procedures to evaluate the assumptions of the 
spatiotemporal model with mixed frequencies were evaluated using simulated data similar to the 
study of Malabanan and Barrios (2017). The response variable was generated using the model: 

𝑦𝑖𝑡 = 𝑎 ∑ 𝑓(𝑋𝑖𝑡𝑘
)

𝐾

𝑘=1

+ 𝛽𝑍𝑖𝑡 + 𝛾𝑊𝑖𝑡 + 𝜀𝑖𝑡  , 

𝜀𝑖𝑡 = 𝜌𝜀𝑖,𝑡−1 + 𝑚𝑎𝑖𝑡  ,    𝑎𝑖𝑡~ 𝐼𝐼𝐷(0, 𝜎𝑎). 

where 𝑋𝑖𝑡𝑘
 is the higher temporal resolution covariate simulated from 𝑈(0,1). The functional form 

of 𝑋𝑖𝑡𝑘
 is specified by 𝑓(∙) which only take the linear form for this study. 𝑍𝑖𝑡 is the covariate with 

same frequency as the response simulated from 𝑁(100,10), and 𝑊𝑖𝑡 is the neighborhood variable 

generated from 𝑃𝑜(50). The errors were generated via AR Sieve in two scenarios with 𝜌 = 0.5 
and 𝜌 = 0.9, with 𝑎𝑖𝑡~ 𝐼𝐼𝐷(0,5). Error multiplier 𝑚, is known to induce bias in parametric 
modeling.  

The simulated spatiotemporal data was generated based on different scenarios by 
varying: contribution of each model component to the response, sample size and length of time 
series, correlation of the error terms, error multiplier, and nature of covariate. Table 1 shows the 
simulation boundaries used in the assessment of the proposed model and methodology. These 
parameter settings are a subset of the simulation scenarios created by Malabanan and Barrios 
(2017), but only the scenarios that were found to affect the performance of the estimation of 
procedure was included in this study to minimize computation time.   

The weight of each simulated covariate, denoted by 𝑎, 𝛽, and 𝛾, were set to have several 
scenarios that varies their contribution to the variability of the response. The covariates can have 
equal contribution, or one covariate dominates the rest. 
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Table 1. Simulation Boundaries 

Parameter Parameter Settings Description 

No. of subtime points 
per unit time 

K=12 High temporal resolution 

Contribution of each 
model component to the 
response (f(x)-z-w-e) 

(30-30-30-10)   
(20-50-20-10)  
(20-20-50-10)  

Equal contribution 
Dominating other covariate 
Dominating neighborhood covariate 

Sample size and length 
of time series 

(N=50, T=50) 
(N=50, T=80) 
(N=80, T=50) 

Balanced data 
Longer time series than number of obs. 
More obs. than length of time series 

Correlation of the error 
terms 

𝜌=0.5 
𝜌=0.9 

Moderate 
Strong 

Functional form of the 
ℎ(𝑋𝑖𝑡𝑘

) 
 ∑(𝑋𝑖𝑡𝑘

)  Linear  

Error multiplier 
m=10 
m=1 

With misspecification error 
Without misspecification error 

Nature of Covariate 
𝜌=0 
𝜌=0.5 

No temporal autocorrelation 
With temporal autocorrelation  

 
The covariates can assume temporal association since this is commonly encountered in 

spatiotemporal settings (e.g., precipitation index across time). These temporal characteristics 
were generated based on two characteristics: no temporal association, and with temporal 
correlation. The weights of the covariates were adjusted accordingly across temporal 
characteristics to maintain the desired model component contribution settings.   

Simulation study also includes different sample sizes and lengths of time series. This was 
designed to assess the effect of varying lengths to the performance of the test when testing 
across time points and across locations.  

 

 
4.1 Simulating Violation of Assumption 

 In this study, data was simulated with constant nonparametric and parametric effects 
across spatial units and time points – ideal for the proposed estimation procedure of Malabanan 
and Barrios (2017). The simulated response under the null hypothesis of constant model 
parameters across time and locations is given by the expression 

𝑦𝑖𝑡 = 𝑎 ∑ 𝑓(𝑋𝑖𝑡𝑘
)

𝐾

𝑘=1

+ 𝛽𝑍𝑖𝑡 + 𝛾𝑊𝑖𝑡 + 𝜀𝑖𝑡  ,         𝜀𝑖𝑡 = 𝜌𝜀𝑖,𝑡−1 + 𝑚𝑎𝑖𝑡  . 

Datasets with violations in the assumptions of the model were also simulated. These violations 
were generated at varying degrees and at different rates of occurrence to capture a range of 
possible model violations.  Specifically, three violations were simulated: (1) non-constant 
covariate effect, (2) non-constant neighborhood variable effect, and (3) non-constant temporal 
effect. These violations were generated by varying parameter values at randomly selected 
spatial units or time points.  To illustrate, the simulated response under non-constant covariate 
effect across spatial units is given by:  

𝑦𝑖𝑡 = 𝑎 ∑ 𝑓(𝑋𝑖𝑡𝑘
)

𝐾

𝑘=1

+ (𝛽 + 𝑣𝑖𝛽)𝑍𝑖𝑡 + 𝛾𝑊𝑖𝑡 + 𝜀𝑖𝑡  ,         𝜀𝑖𝑡 = 𝜌𝜀𝑖,𝑡−1 + 𝑚𝑎𝑖𝑡 

where 𝑣𝑖 is a nonzero constant for some spatial unit 𝑖. 

Varying the values of 𝑣𝑖 also controls the percent difference of the non-constant parameter from 
the simulated “true” value. Likewise, response variable can be generated with non-constant 
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neighborhood variable effect and nonconstant temporal effect by (𝛾 + 𝑣𝑖𝛾) and  (𝜌 + 𝑣𝑖𝜌)  
respectively. The testing procedure were assessed using one model violation at a time.   
 
Table 2. Degree and Frequency of Violation in Model Assumption 

Modification Settings Description / Remarks 

Percent of spatial units / time points 
with different parameter values 

10% 
20% 

Few 
Regular 

Percent difference from “true” 
parameter value in simulation 

𝑣 = 0.3 

𝑣 = 1.0 
𝑣 = 2.0 

Weak Deviation 
Moderate Deviation 
Strong Deviation 

 
 The proposed tests were assessed across varying degrees of parameter difference and 
frequency of occurrence.  As illustrated in Table 2, assumption violation was generated in 10% 
of spatial units or time points and in 20% of spatial units or time points, while maintaining constant 
parameter values to units or time points not selected. The differences of these parameters vary 
from 30% to 200% of the “true” parameter value in order to reflect weak to strong deviation. The 
simulated temporal parameter 𝑟, however, is not included in this range because of the restriction 
|𝜌| < 1. Thus, percent difference for temporal parameter simulations was restricted to 30-80% 
of the “true” parameter value.  

 

5. Results and Discussion 

 Performance of the test under varying data simulations were evaluated using its power 
and size. Power is the computed as the proportion of rejection under a false null hypothesis, 
while size is computed as the proportion of rejection under a true null hypothesis. For each 
scenario, two-hundred replicates were considered to calculate size and power at 5% level of 
significance. Covariate effect is characterized by the coefficient (𝛽) associated with the 
covariates (𝑍) with similar frequency as the response variable. The proposed test evaluates if 
this coefficient attains homogeneity through time and location. The following figures below 
illustrate the behavior of the estimated bootstrap confidence intervals for constant and non-
constant covariate effect: 
 
 
 

 

 

 

 

 

 

(a)                   (b) 

Figure 1. Sample Plot of 95% Bootstrap CI of 𝛽𝑡 under (a) under 𝐻0: 𝛽𝑡 = 𝛽 = 0.79; and (b) 

𝐻1:  𝛽𝑡 =  𝛽 + 𝑣𝛽; 𝑣 = 1.0 for 5 time points, 𝑣 = 0 for 45 time points 
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(a)                   (b) 

Figure 2. Sample Plot of 95% Bootstrap CI of 𝛽𝑡 under (a) under 𝐻0: 𝛽𝑖 = 𝛽 = 0.79; and (b) 

𝐻1:  𝛽𝑖 =  𝛽 + 𝑣𝛽; 𝑣 = 1.0 for 5 time points, 𝑣 = 0 for 45 time points 

 

5.1 Effect of Model Component Contributions to Testing Constant Covariate Effect 

 Table 3 and Table 4 illustrate the average empirical size and power of the test for different 
contributions of model component to the response. Three scenarios are considered: (1) equal 
contribution (30-30-30-10), (2) dominating covariate effect (20-50-20-10), and (3) dominating 
neighborhood variable effect (20-20-50-10). These scenarios were generated in order to identify 
the effect of varying model contributions to the estimation of covariate effect and as well as the 
performance of the proposed testing procedure.  
 The size of the test is observed to be unaffected by different component contributions 
and approximately remains under the nominal value of 0.05. The power of the test appears to 
be affected by two variables: the error multiplier (𝑚), and the magnitude (𝑣) of the model violation. 
Power is lowest when error of the model is high and magnitude of non-homogeneity in covariate 
effect is low, which appears common, given the difficulty in detecting non-homogeneity in 
covariate effects under small deviations.  Sensitivity improves as the frequency of time points / 
locations with different covariate effect increase. This trend however could be misleading, since 
the higher frequency of deviation can mask the presence of non-homogeneity of coefficients. 
Among the scenarios of model component contributions, the power is slightly higher at (20-50-
20-10), which is also expected given the variable being tested has the highest contribution to the 
response. The test performs at best when model error is controlled to a minimum and deviation 
in constancy of coefficient is almost twice the “true” value as indicated by power values close or 
equal to 1.00.  

 
 
Table 3. Average empirical size and power in testing constant covariate effect across time points 

for different model component contributions  
Error 

multiplier 
Component 
Contribution 
(f(x)-z-w-e) 

Size under 
𝐻0: 𝛽𝑡 =  𝛽 

Power against 𝐻1:  𝛽𝑡 =  𝛽 + 𝑣𝛽 

5 time points 10 time points 

𝑣 = 0.3 𝑣 = 1 𝑣 = 2 𝑣 = 0.3 𝑣 = 1 𝑣 = 2 

m=1 

(30-30-30-10) 0.051 0.141 0.858 1.000 0.232 0.946 1.000 

(20-50-20-10) 0.043 0.392 0.995 1.000 0.528 1.000 1.000 

(20-20-50-10) 0.065 0.073 0.605 0.974 0.101 0.749 0.995 

m=10 

(30-30-30-10) 0.053 0.051 0.064 0.083 0.057 0.063 0.136 

(20-50-20-10) 0.055 0.051 0.069 0.212 0.054 0.095 0.311 

(20-20-50-10) 0.043 0.045 0.057 0.062 0.047 0.059 0.078 
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Table 4. Average empirical size and power in testing constant covariate effect across locations 
for different model component contributions 

Error 
multiplier 

Component 
Contribution 
(f(x)-z-w-e) 

Size under 
𝐻0: 𝛽𝑡 =  𝛽 

Power against 𝐻1:  𝛽𝑖 =  𝛽 + 𝑣𝛽 

5 locations 5 locations 

𝑣 = 0.3 𝑣 = 1 𝑣 = 2 𝑣 = 0.3 𝑣 = 1 𝑣 = 2 

m=1 

(30-30-30-10) 0.054 0.133 0.755 0.958 0.189 0.845 0.968 

(20-50-20-10) 0.051 0.302 0.921 0.982 0.433 0.963 0.985 

(20-20-50-10) 0.055 0.064 0.481 0.850 0.090 0.630 0.914 

m=10 

(30-30-30-10) 0.044 0.055 0.060 0.096 0.052 0.067 0.149 

(20-50-20-10) 0.047 0.049 0.071 0.196 0.053 0.105 0.300 

(20-20-50-10) 0.048 0.047 0.060 0.067 0.049 0.052 0.078 

 

5.2 Effect of Error Correlation in Testing for Constant Covariate Effect 

 Error in the model is set to have AR(1) structure to characterize temporal dependencies 
in the response variable. Two cases are considered in the study: (1) moderate autocorrelation 
(𝜌 = 0.5), and (2) autocorrelation near non-stationarity (𝜌 = 0.9). Given that different error 
structures result to adjustments in estimating model coefficients, the performance of the 
proposed testing procedure is likewise expected to be different across different AR structures.  
 Size and power of the test are given in Tables 5 and 6. The test appears to be correctly 
sized and unaffected by different error correlations. On the other hand, power is observed to vary 
significantly according to two variables: the error multiplier (𝑚), and the magnitude (𝑣) of the 
model violation. In addition, sensitivity of the test is slightly better at error correlation of 0.5 as 
compared to 0.9, but comparable values are observed under high magnitude of non-
homogeneity in coefficients. The test performs at best under minimum model prediction error 
and presence of high deviation from “true” coefficient value.  
 
Table 5. Average empirical size and power in testing constant covariate effect across time for 

different error correlations 
Error 

multiplier 
Error 

correlation 
Size under 
𝐻0: 𝛽𝑡 =  𝛽 

Power against 𝐻1: 𝛽𝑡 =  𝛽 + 𝑣𝛽 

5 time points 10 time points 

𝑣 = 0.3  𝑣 = 1  𝑣 = 2 𝑣 = 0.3  𝑣 = 1  𝑣 = 2 

m=1 
𝜌 = 0.5 0.054 0.285 0.959 1.000 0.425 0.990 1.000 

𝜌 = 0.9 0.042 0.118 0.680 0.983 0.148 0.807 0.997 

m=10 
𝜌 = 0.5 0.061 0.041 0.066 0.174 0.046 0.074 0.257 

𝜌 = 0.9 0.052 0.057 0.061 0.064 0.060 0.070 0.093 

 

Table 6. Average empirical size and power in testing constant covariate effect across locations 
for different error correlations 

Error 
multiplier 

Error 
correlation 

Size under 
𝐻0: 𝛽𝑖 =  𝛽 

Power against 𝐻1: 𝛽𝑖 =  𝛽 + 𝑣𝛽 

5 locations 10 locations 

𝑣 = 0.3  𝑣 = 1  𝑣 = 2 𝑣 = 0.3  𝑣 = 1  𝑣 = 2 

m=1 
𝜌 = 0.5 0.064 0.239 0.866 0.988 0.346 0.929 0.994 

𝜌 = 0.9 0.058 0.094 0.572 0.872 0.129 0.696 0.917 

m=10 
𝜌 = 0.5 0.042 0.063 0.083 0.168 0.055 0.093 0.260 

𝜌 = 0.9 0.037 0.037 0.045 0.072 0.048 0.056 0.091 
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5.3 Effect of Sample Size and Length of Time Series in Testing for Constant Covariate 
Effect 

 The sample size and length of time series is set to vary to represent datasets collected 
with unequal number of observations and time points. In this study, three cases are considered: 
(1) Equal sample size and time series length (N=T), (2) More observations than time points 
(N>T), and (3) less observations than time points (N<T).  
 In Tables 7 and 8, the size and power of the test are illustrated under different sample 
sizes and lengths of time series. Unlike other criteria being considered, the test performs slightly 
different when testing across time points as compared to testing across locations. In Table 7, 
power of the test is slightly higher when (N>T) when testing across time points, while in Table 8, 
power is higher when (N<T) when testing across locations. Sensitivity of the test is greatly 
affected by model prediction error and degree of model violation.  Size is also observed to be 
under acceptable level of 0.05.  
 
Table 7. Average empirical size and power in testing constant covariate effect across time for 

varying sample size and length of time series 
Error 

multiplier 
Sample size 
and length of 
time series 

Size 
under 

𝐻0: 𝛽𝑡 =  𝛽 

Power against 𝐻1: 𝛽𝑡 =  𝛽 + 𝑣𝛽 

5 time points  10 time points 
𝑣 = 0.3  𝑣 = 1  𝑣 = 2 𝑣 = 0.3  𝑣 = 1  𝑣 = 2 

m=1 

N=T 0.062 0.165 0.772 0.985 0.235 0.877 0.997 

N>T 0.047 0.263 0.893 1.000 0.372 0.938 1.000 

N<T 0.048 0.178 0.793 0.990 0.254 0.880 0.998 

m=10 

N=T 0.045 0.047 0.066 0.104 0.047 0.063 0.132 

N>T 0.062 0.038 0.057 0.145 0.048 0.071 0.227 

N<T 0.050 0.062 0.068 0.107 0.064 0.083 0.167 

 

Table 8. Average empirical size and power in testing constant covariate effect across locations 
for varying sample size and length of time series 

Error 
multiplier 

Sample size 
and length of 
time series 

Size under 
𝐻0: 𝛽𝑖 =  𝛽 

Power against 𝐻1: 𝛽𝑖 =  𝛽 + 𝑣𝛽 

5 locations 10 locations 

𝑣 = 0.3  𝑣 = 1  𝑣 = 2 𝑣 = 0.3  𝑣 = 1  𝑣 = 2 

m=1 

N=T 0.042 0.128 0.653 0.901 0.200 0.744 0.924 

N>T 0.041 0.134 0.697 0.928 0.193 0.800 0.956 

N<T 0.055 0.237 0.808 0.961 0.319 0.894 0.988 

m=10 

N=T 0.046 0.045 0.056 0.099 0.050 0.067 0.151 

N>T 0.061 0.050 0.063 0.096 0.048 0.057 0.136 

N<T 0.056 0.056 0.073 0.164 0.056 0.100 0.239 

 

5.4 Effect of Nature of Covariate in Testing Constant Covariate Effect 

 Given that the response variable is considered to have temporal dependencies, it follows 
that the associated covariates could potentially have an AR structure. In this study, two scenarios 
were created: (1) covariates have no temporal correlation (𝜌 = 0), and (2) covariates have 
temporal correlation (𝜌 = 0.5). The structure of the covariate is expected to change when 
assuming temporal dependency, hence performance of the test is evaluated across these 
scenarios.  
 It can be observed from Tables 9 and 10 that power of the test is slightly higher when 
testing across locations than testing across time points. Although power still approaches 1.0 as 
higher degrees of hon-homogeneity is imposed, this difference can be observed under lower 
frequency and degree of non-homogeneity of covariate effect. The test also appears correctly 
sized as indicated by values close or under 0.05.   
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Table 9. Average empirical size and power in testing constant covariate effect across time for 
different nature of covariate 

Error 
multiplier 

Nature of 
covariate 

Size under 
𝐻0: 𝛽𝑡 =  𝛽 

Power against 𝐻1: 𝛽𝑡 =  𝛽 + 𝑣𝛽 

5 time points 10 time points 

𝑣 = 0.3 𝑣 = 1 𝑣 = 2 𝑣 = 0.3 𝑣 = 1 𝑣 = 2 

m=1 
𝜌 = 0.0 0.064 0.230 0.879 0.995 0.320 0.946 0.998 

𝜌 = 0.5 0.056 0.103 0.559 0.865 0.155 0.679 0.914 

m=10 
𝜌 = 0.0 0.050 0.053 0.069 0.151 0.049 0.087 0.234 

𝜌 = 0.5 0.038 0.047 0.059 0.089 0.054 0.062 0.117 

 

Table 10. Average empirical size and power in testing constant covariate effect across locations 
for different nature of covariate 

Error 
multiplier 

Nature of 
covariate 

Size under 
𝐻0: 𝛽𝑖 =  𝛽 

Power against 𝐻1: 𝛽𝑖 =  𝛽 + 𝑣𝛽 

5 locations 10 locations 

𝑣 = 0.3 𝑣 = 1 𝑣 = 2 𝑣 = 0.3 𝑣 = 1 𝑣 = 2 

m=1 
𝜌 = 0.0 0.056 0.237 0.878 0.999 0.341 0.946 1.000 

𝜌 = 0.5 0.047 0.167 0.761 0.984 0.233 0.851 0.997 

m=10 
𝜌 = 0.0 0.050 0.054 0.077 0.163 0.060 0.086 0.228 

𝜌 = 0.5 0.048 0.044 0.050 0.075 0.045 0.059 0.122 

 

 

6. Conclusions  

The proposed procedure in testing for constant covariate effect across time points and spatial 
units is correctly sized under the different scenarios simulated. Power of test follows an 
increasing pattern as frequency and degree of deviation from the true coefficient increase.  In 
general, the test is sensitive under the presence of non-homogenous covariate effect that is at 
least twice the magnitude of the “true” coefficient, and when model errors are not too large. The 
frequency of time points / locations with different coefficients only slightly improves power, which 
is an advantageous finding, since the test is expected to detect non-constancy of coefficients 
regardless of the rate of occurrence of model violation.   
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