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Motivation

○ In most multifactor experiments, factorial designs are often used to properly 
measure the response variable. When factors are crossed, all possible 
combination of the independent variables are of concern which also allows 
examination of interaction among factors. However, when some factors 
cannot be crossed to another factor, and each of these factors appear at only 
one level of another factor, then factors are said to be nested. (Schielzeth and 
Nakagawa, 2013).

○With the presence of covariates in a design, there is no existing model yet 
that properly measures the treatment effects of a nested experimental 
design, which also specifies the relationship of the response variable and 
covariate component in a nonparametric form.



Objective

• To estimate nonparametrically the covariate effect to capture all the 
possible heterogeneity among the experimental units and to estimate 
the nesting effect, then set these aside to properly test for the 
significance of the treatment effects.



Semiparametric Analysis of Covariance Model

• A semiparametric ANCOVA model is a model which specifies the 
relationship between the response variable and the covariate component 
in a nonparametric form. 

• Alao (2016) postulated a semiparametric mixed ANCOVA model with 
nonparametric part corresponding to the fixed covariate and the 
parametric part corresponding to the random effects. The model is given 
by:

𝑌𝑖𝑗𝑘 = 𝑓 𝑋𝑖𝑗𝑘 + τ𝑗 + 𝛿𝑘 + τ𝛿 𝑗𝑘 + 𝜖𝑖𝑗𝑘 ,

𝑖 = 1,2, …𝑛 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠
𝑗 = 1,2, … , 𝑝 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠
𝑘 = 1,2,… , 𝑞 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠



Postulated Semiparametric Mixed ANCOVA 
model for Nested Design
• The parametric part corresponds to the treatment effects and nested effect 

while the nonparametric part corresponds to the fixed covariate. In this 
postulated model, two factors cross with each other, and one factor is 
nested in one of them. 

The model is defined as:
𝑌(𝑗𝑘𝑙)𝑖 = 𝑓 𝑋(𝑗𝑘𝑙)𝑖 + τ𝑗 + 𝛿𝑘 + (τ𝛿)𝑗𝑘 + 𝛾(𝑘)𝑙 + 𝜖(𝑗𝑘𝑙)𝑖

𝑖 = 1,2, …𝑛 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠
𝑗 = 1,2, … , 𝑝 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠
𝑘 = 1,2, … , 𝑞 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠
𝑙 = 1,2, …𝑚 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠



Estimation Procedure

• The postulated model will be estimated through a hybrid backfitting
algorithm by Alao and Barrios (2016), called B-ARMS (Bootstrapped 
Analysis of Covariance via REML with splines). 

Algorithm of ARM
• Step 1 Fit the nesting part of the model using REML method by ignoring 
𝑓 𝑋(𝑖𝑗𝑘)𝑙 and   the parametric part τ𝑗 + 𝛿𝑘 + (τ𝛿)𝑗𝑘 so that the model 
would be 𝑌(𝑖𝑗𝑘)𝑙 = 𝛾𝑘(𝑙)+𝜖(𝑗𝑘𝑙)𝑖. This will contain estimates of the 
components which we are of interest. 

• Step 2: Compute the partial residuals 𝑝(𝑖𝑗𝑘)𝑙 = 𝑌(𝑖𝑗𝑘)𝑙 − ෠𝑌(𝑖𝑗𝑘)𝑙. These 
partial residuals now contain information on 𝑓 𝑋(𝑖𝑗𝑘)𝑙 and τ𝑗 + 𝛿𝑘 +
(τ𝛿)𝑗𝑘 which will then be used to estimate 𝑓 𝑋(𝑖𝑗𝑘)𝑙 and τ𝑗 + 𝛿𝑘 +
(τ𝛿)𝑗𝑘 consecutively. 



Algorithm of ARMS

• Step 3: Using smoothing spline, estimate 𝑓 𝑋(𝑖𝑗𝑘)𝑙 nonparametrically.

• Step 4: Compute the new partial residuals 𝑝(𝑖𝑗𝑘)𝑙
∗ = 𝑝(𝑖𝑗𝑘)𝑙 − መ𝑓 𝑋(𝑖𝑗𝑘)𝑙 . These 

partial residuals contain information on τ𝑗 + 𝛿𝑘 + (τ𝛿)𝑗𝑘 and thus, will be used 
to estimate the main effects. 

• Step 5: Estimate the parametric part containing the main effects using REML. The 
random model would be  𝑝(𝑖𝑗𝑘)𝑙

∗ = τ𝑗 + 𝛿𝑘 + (τ𝛿)𝑗𝑘+𝜖(𝑗𝑘𝑙)𝑖.

• Step 6: Compute for the new prtial residuals 𝑒(𝑖𝑗𝑘)𝑙 = 𝑌(𝑖𝑗𝑘)𝑙 − መ𝑓 𝑋 𝑖𝑗𝑘 𝑙 −
ො𝛾𝑘(𝑙). These partial residuals contain information on the nesting effect and then 

be used to estimate the components in Step 1.

• Step 7: Repeat steps 1 to 6 until convergence, i.e. the change in the new 
estimates from the previous estimates do not change more than the tolerance 
level (0.001)



Algorithm of B-ARMS

• Step 1: Generate the initial estimates and residuals ∅(𝑖𝑗𝑘)𝑙 = 𝑌(𝑖𝑗𝑘)𝑙 − ෠𝑌(𝑖𝑗𝑘)𝑙 by 
fitting the model (2) using ARMS. 200 bootstrap samples of residuals in Step 2 
below are obtained using these residuals, while the initial estimates are used to 
compute for the new values of dependent variables in Step 3 below.

• Step 2: Generate new set of residuals by obtaining samples of ∅(𝑖𝑗𝑘)𝑙 from Step 1 
with replacement from {1, 2, …, n}. These residuals will be used to compute the 
new values of Y in Step 3.

• Step 3: Compute for the new values of the dependent variable, 

• 𝑌 𝑖𝑗𝑘 𝑙
∗ = መ𝑓 𝑋 𝑖𝑗𝑘 𝑙 + ොτ𝑗 + መ𝛿𝑘 + (෢τ𝛿)𝑗𝑘+ො𝛾𝑘(𝑙) + 𝜖(𝑖𝑗𝑘)𝑙, where መ𝑓 𝑋 𝑖𝑗𝑘 𝑙 , 

ොτ𝑗, መ𝛿𝑘, (෢τ𝛿)𝑗𝑘 and ො𝛾𝑘(𝑙) are estimates from Step 1 and new residuals ∅(𝑖𝑗𝑘)𝑙
∗ from 

Step 2.

• Step 4: Fit the model from the pseudo data in Step 3 using ARMS. This contains 
the estimates of the components from the dependent variable 𝑌 𝑖𝑗𝑘 𝑙

∗ .



Power and Size of the Test

• In order to test the significance of the nesting effect given the postulated 
model, an empirical distribution of the test statistic will be obtained to test 
if the 𝑙𝑡ℎ nested factor has no  effect on the response by obtaining an 
empirical distribution of the test statistic by repeating Steps 2 to 4 of B-
ARMS algorithm R times, and then constructing a 95% bootstrap 
confidence interval using the empirical distribution. If the interval contains 
0, we reject the null hypothesis.

• To evaluate the test, power and size of the test will be computed. The 
power of the test will be computed by constructing the confidence interval 
200 times and the proportion of confidence interval that does not contain 
0, or the rejected null hypothesis is the power of the test. For size of the 
test, data will be generated without the treatment effects and then 
confidence interval will be constructed using B-ARMS. The proportion of 
rejected null hypothesis is the size of the test. 



Results

• The proposed test is correctly sized for random and mixed effects model.  
Size is also comparable to the baseline tests except for fixed effects model 
where the test is found to be incorrectly sized.

• The proposed test is found to be more powerful than the baseline test 
across the different percentage differences in treatment levels compared to 
the baseline test procedure. 

• In the presence of contamination of the covariate, dominating covariate 
effect, misspecification error and non-normal errors, the proposed test 
procedure performs better than the baseline test.

• Notably, the proposed test is more powerful when the replicate size is 
small (r=2), than when the replicate size is large (n=5).


