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ABSTRACT 
 
 
 

A nonparametric test for a postulated semiparametric mixed analysis of covariance 
model for a nested design is developed. In the nested design, the parametric part corresponds 
to the main treatment and nested effects while the nonparametric part corresponds to the fixed 
covariate. A hybrid backfitting algorithm was used to estimate the model and a bootstrap-
based test was used to test the significance of the treatment effects. Simulation shows that 
the proposed test procedure is correctly-sized for models with random and mixed treatment 
effects. The test also performs better when the replicate size is small and  more powerful than 
the ordinary analysis of covariance in the presence of misspecification error, nonnormality of 
errors, and dominating covariate effect. 
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1. INTRODUCTION 

In most multifactor experiments, factorial designs are often used to properly measure 
the response variable. When factors are crossed, all possible combination of the independent 
variables are of concern which also allows examination of interaction among factors. However, 
when some factors cannot be crossed to another factor, and each of these factors appear at 
only one level of another factor, then factors are said to be nested. (Schielzeth and Nakagawa, 
2013). 

One of the most important types of experimental designs is the nested or hierarchical 
design wherein levels of one factor are similar but not identical for the different levels of one 
or more other factors. Nested design of experiment is widely used in industrial settings 
(Montgomery, 2013). Moreover, data with nested structures are very common in studies of 
evolution and ecology (Quinn & Keough 2002).  

Analysis of covariance (ANCOVA) is a method used to correctly measure the treatment 
effects by setting aside the effect of covariates. (Montgomery, 2016; Searle, Casella, and 
McCulloch 1992). The problem of covariate in the traditional analysis of covariance is that the 
effect of covariate is not properly accounted. Due to these circumstances, properly estimating 
treatment effects to a response is of main interest. Recently, semiparametric ANCOVA model 
has been focused due to its greater flexibility to explain data (Jiuang, 2015). Alao (2016) 
postulated a semiparametric mixed ANCOVA model estimated by imbedding restricted 
maximum likelihood estimation and smoothing splines regression into backfitting algorithm.  

With the presence of covariates in a design, there is no existing model yet that properly 
measures the treatment effects of a nested experimental design, which also specifies the 
relationship of the response variable and covariate component in a nonparametric form. In this 
study, we postulated a semiparametric mixed ANCOVA for a design with nested factor and 
tested the treatment effects after properly estimating the proposed model.  

The aim of this study is to estimate nonparametrically the covariate effect to capture all the 
possible heterogeneity among the experimental units and to estimate the nesting effect, then 
set these aside to properly test for the significance of the treatment effects. Specifically, this 
paper aims to (1) postulate a semiparametric ANCOVA model for a nested design, (2) test 
and characterize the significance of the treatment effects/variance component based on a 
hybrid-backfitting method; and (3) evaluate the size and power of the test using simulation 
studies. 
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2. REVIEW OF RELATED LITERATURE 

2.1 Semiparametric Analysis of Covariance Model 
A semiparametric ANCOVA model is a model which specifies the relationship between 

the response variable and the covariate component in a nonparametric form. When the 
response variable is believed to be linearly related to the treatment effect but the effect of the 
covariate on the response is unknown, then a semiparametric ANCOVA model will be 
appropriate in this case. (Jiang, 1995) 
 Alao (2016) postulated a semiparametric mixed ANCOVA model with nonparametric 
part corresponding to the fixed covariate and the parametric part corresponding to the random 
effects. The model is given by: 

𝑌𝑖𝑗𝑘 = 𝑓(𝑋𝑖𝑗𝑘) + τ𝑗 + 𝛿𝑘 + (τ𝛿)𝑗𝑘 + 𝜖𝑖𝑗𝑘  , {

𝑖 = 1,2, … 𝑛 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠
𝑗 = 1,2, … , 𝑝 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠
𝑘 = 1,2, … , 𝑞 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠

 

where  

𝑌𝑖𝑗𝑘 is the response variable of the 𝑖𝑗𝑘𝑙𝑡ℎ  observation 

𝑋𝑖𝑗𝑘 is fixed covariate score of the 𝑖𝑗𝑘𝑙𝑡ℎ observation 

𝑓(𝑋𝑖𝑗𝑘) is the smoothed function of 𝑋𝑖𝑗𝑘 (nonparametric part) 

τ𝑗 , 𝛿𝑘 are effects of treatment 𝑗 and treatment 𝑘 respectively 

(τ𝛿)𝑗𝑘 is the random interaction effect of the 𝑗𝑘𝑡ℎ combination 

𝜖𝑖𝑗𝑘 is the error component  

This model assumes that 𝑌𝑖𝑗𝑘 is a continuous response variable, X is a fixed and  

continuous covariate, the main effects τ𝑗 and 𝛿𝑘 are random, the interaction τ𝛿 is random, the 

predictors are independent to each other; and the subjects are randomly chosen from a 
defined population and are assigned randomly to treatment groups. Two estimated 
procedures were proposed, one is a modified, iterative estimation procedure for 
semiparametric mixed ANCOVA model infusing REML and non-parametric regression 
(ARMS); and the next one is by incorporating a bootstrap approach into the backfitting 
framework of the first procedure (B-ARMS). 

 
2.2 Nested Design 

A nested model, or hierarchical model is an experimental design wherein the levels of 
one factor are similar but are not identical for different levels of another factor. When one factor 
is nested under the levels of another factor, then the design would be a two-stage nested 
design (Montgomery, 2013). An illustration where each level of a nested factor B is connected 
to only one unique level of the higher-level factor A is shown in Figure 1. 

 
 

Figure 1. Schematic illustration of nested design 

  Factor A 

  A1 A2 

Factor 
B 

B1 X  

B2 X  

B3  X 

B4  X 

  
The cell marked with X shows the combination of AB included in the design. The 

illustration above shows that each level of factor A is associated with a unique level of the 
level of factor B.  



 3 

 The difference of nested design to a factorial design is that in crossed design, at least 
one level of each factor is connected to more than one level of the other factor as illustrated 
below:  

Figure 2. Schematic illustration of crossed design 

  Factor A 

   A1 A2 

Factor 
B 

B1 X X 

B2 X 𝑋 

 
 

3. METHODOLOGY 

3.1 Postulated Semiparametric Mixed ANCOVA model for Nested Design  
This study will focus on a semiparametric mixed ANCOVA model with a nested factor. 

The parametric part corresponds to the treatment effects and nested effect while the 
nonparametric part corresponds to the fixed covariate. In this postulated model, two factors 
cross with each other, and one factor is nested in one of them. 

The model is defined as: 

𝑌(𝑗𝑘𝑙)𝑖 = 𝑓(𝑋(𝑗𝑘𝑙)𝑖) + τ𝑗 + 𝛿𝑘 + (τ𝛿)𝑗𝑘  + 𝛾(𝑘)𝑙 + 𝜖(𝑗𝑘𝑙)𝑖 

 

{

𝑖 = 1,2, … 𝑛 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠
𝑗 = 1,2, … , 𝑝 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠
𝑘 = 1,2, … , 𝑞 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠
𝑙 = 1,2, … 𝑚 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠

 

where 

𝑌(𝑗𝑘𝑙)𝑖 is the response variable of the 𝑖𝑗𝑘𝑙𝑡ℎ  observation 

𝑋(𝑗𝑘𝑙)𝑖 is fixed covariate score of the 𝑖𝑗𝑘𝑙𝑡ℎ observation 

𝑓(𝑋(𝑗𝑘𝑙)𝑖) is the smoothed function of 𝑋(𝑗𝑘𝑙)𝑖 (nonparametric) 

τ𝑗 , 𝛿𝑘 are effects of treatment 𝑗 and treatment 𝑘 respectively 

(τ𝛿)𝑗𝑘 is the interaction effect of the 𝑗𝑘𝑡ℎ combination 

𝛾(𝑘)𝑙 is the effect of the 𝑙𝑡ℎ  treatment nested within the 𝑘𝑡ℎ treatment 

𝜖(𝑗𝑘𝑙)𝑖 is the error component  

The assumptions of the postulated model are as follows: 
1. 𝑌 is a continuous response variable. 
2. 𝑋 is fixed and a continuous covariate. 

3. τ𝑗 , 𝛿𝑘 are effects used to address the effect of treatment levels. 

4. (τ𝛿)𝑗𝑘 is the interaction effect used to address the effect of 𝑗𝑘𝑡ℎ treatment 

combinations. 

5. 𝛾(𝑘)𝑙 is the nesting effect used to address the effect of 𝑙𝑡ℎ treatment nested within 

the 𝑘𝑡ℎ treatment levels. 
6. The independent variable and the covariate are independent of each other. 
7. The random effects and unobservable random errors are independent of each 

other. 
8. The model follows a balanced design wherein 𝑝 corresponds to the number of 

levels of factor j, 𝑞 as the number of levels of factor k, and 𝑚 as the number of 

levels of factor 𝑙 within the 𝑘𝑡ℎ treatment 
In this model, all levels of factor A appear simultaneously in all levels of factor B while 

the level of factor C can only be determined by knowing the level of factor B. The model is 
illustrated below:  
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Figure 4. Schematic illustration of a three-stage/factor nested design 

  Factor A 

   A1 A2 

Factor 
B 

B1 

C(1)1 

 

𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 {
𝑦1111

𝑦1112
 

  

C(1)3 

 
𝑦2131 

𝑦2132 
  

B2 

C(2)2 

𝑦1221 

𝑦1222 
  

C(2)4 

𝑦2241 

𝑦2242 
  

 
That is, if the level of factor B is B1, then factor C would be C(1)1 and C(1)3, while if the 

higher-level factor B is B2, then factor C would be C(2)2 and C(2)4. This design is widely used 

experiments in industrial settings where one factor cannot be associated to all of the settings 
in another factor, or can only be determined by identifying its high-level factor.  
 
3.2 Estimation Procedure 

The postulated model will be estimated through a hybrid backfitting algorithm by Alao 
(2016), called B-ARMS (Bootstrapped Analysis of Covariance via REML with splines) modified 
for nested models. The ARMS method alternately estimates the variance components for the 
random-effects model and the smooth function of the covariate. Using REML, variance 
component corresponding to the parametric part are first estimated by ignoring the effect of 
the nonparametric component which is the covariate. A nonparametric regression using the 
computed residuals after fitting the model without the nonparametric part will then be used to 
estimate the smooth function of the covariate. Using B-ARMS, estimates from ARMS are used 
and resampling with replacement of the residuals is applied. Note that for this study, a nesting 
specification is added in the model. Further, a confidence interval based on bootstrap 
percentiles is constructed and used to test the significance of the nested effect.  

 
Below is the step-by-step procedure for the estimation of model components: 

 
Algorithm using ARMS 
 The algorithm of ARMS below is applicable to models with random effects. Ordinary 
least squares regression was used in estimation of parameters instead of REML for fixed-
effects model.  

Step 1: Fit the nested part of the model using REML method  with nesting specification by 

ignoring 𝑓(𝑋(𝑗𝑘𝑙)𝑖)  and the parametric part τ𝑗 + 𝛿𝑘 + (τ𝛿)𝑗𝑘 so that the model 

would be 𝑌(𝑗𝑘𝑙)𝑖 =  𝛾(𝑘)𝑙 + 𝜖(𝑗𝑘𝑙)𝑖. This will contain estimates of the components 

which we are of interest.  

Step 2: Compute the partial residuals 𝑝(𝑗𝑘𝑙)𝑖 = 𝑌(𝑗𝑘𝑙)𝑖 − 𝑌̂(𝑗𝑘𝑙)𝑖. These partial residuals now 

contain information on 𝑓(𝑋(𝑗𝑘𝑙)𝑖) and τ𝑗 + 𝛿𝑘 + (τ𝛿)𝑗𝑘  which will then be used to 

estimate 𝑓(𝑋(𝑗𝑘𝑙)𝑖) and τ𝑗 + 𝛿𝑘 + (τ𝛿)𝑗𝑘 consecutively. 

Step 3: Using smoothing spline, estimate 𝑓(𝑋(𝑗𝑘𝑙)𝑖) nonparametrically, 𝑝(𝑗𝑘𝑙)𝑖 =

𝑓(𝑋(𝑗𝑘𝑙)𝑖) + 𝑒𝑟𝑟𝑜𝑟. 

Step 4: Compute the new partial residuals 𝑝(𝑗𝑘𝑙)𝑖
∗ = 𝑝(𝑗𝑘𝑙)𝑖 − 𝑓(𝑋(𝑗𝑘𝑙)𝑖). These partial 

residuals contain information on τ𝑗 + 𝛿𝑘 + (τ𝛿)𝑗𝑘 and thus, will be used to estimate 

the main effects.  
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Step 5: Estimate the parametric part containing the main effects using REML. The random 
model would be  𝑝(𝑗𝑘𝑙)𝑖

∗ = τ𝑗 + 𝛿𝑘 + (τ𝛿)𝑗𝑘 + 𝑒𝑟𝑟𝑜𝑟. 

Step 6: Compute for the new partial residuals 𝑒(𝑗𝑘𝑙)𝑖 = 𝑌(𝑗𝑘𝑙)𝑖 − 𝑓(𝑋(𝑗𝑘𝑙)𝑖) − ( τ̂𝑗 + 𝛿𝑘 +

(τ𝛿̂)𝑗𝑘) . These partial residuals contain information on the nesting effect and then 

be used to estimate the component 𝛾(𝑘)𝑙 in Step 1. 

Step 7: Repeat steps 1 to 6 until convergence, i.e. the change in the new estimates from 
the previous estimates do not change more than the tolerance level (0.001) 

The nested part of the design is estimated  first since it poses the limitation on the structure 
of the model. Further, the nested factor limits the constraints of the lower-level factor. In many 
cases, the nested effects contribute first in the model and so the covariates are estimated last 
or at a latter stage in the hierarchy.  

 
Algorithm using B-ARMS: 

Step 1: Generate the initial estimates and residuals ∅(𝑗𝑘𝑙)𝑖 = 𝑌(𝑗𝑘𝑙)𝑖 − 𝑌̂(𝑗𝑘𝑙)𝑖 by fitting the 

model (2) using ARMS. R bootstrap samples of residuals in Step 2 below are 
obtained using these residuals, while the initial estimates are used to compute for 
the new values of dependent variables in Step 3 below. 

Step 2: Generate new set of residuals 𝜖∗ by obtaining samples of ∅(𝑗𝑘𝑙)𝑖 from Step 1 with 

replacement from {1, 2, …, n}. These residuals will be used to compute the new 
values of Y in Step 3. 

Step 3: Compute for the new values of the dependent variable,  

              𝑌(𝑖𝑗𝑘)𝑙
∗ = 𝑓(𝑋(𝑗𝑘𝑙)𝑖) + τ̂𝑗 + 𝛿𝑘 + (τ𝛿̂)𝑗𝑘 + 𝛾(𝑘)𝑙 + 𝜖(𝑗𝑘𝑙)𝑖

∗ , where 𝑓(𝑋(𝑗𝑘𝑙)𝑖), τ̂𝑗, 𝛿𝑘, 

(τ𝛿̂)𝑗𝑘  and 𝛾𝑘(𝑙) are estimates from Step 1 and new residuals ∅(𝑗𝑘𝑙)𝑖
∗  from Step 2. 

Step 4: Fit the model from the pseudo data in Step 3 using ARMS. This contains the 
estimates of the components from the dependent variable 𝑌(𝑗𝑘𝑙)𝑖

∗ . 

 
 In order to test the significance of the nesting effect given the postulated model, an 

empirical distribution of the test statistic will be obtained to test if the  𝑙𝑡ℎ nested factor has no  
effect on the response by obtaining an empirical distribution of the test statistic by repeating 
Steps 2 to 4 of B-ARMS algorithm R times then constructing a 95% bootstrap confidence 
interval using the empirical distribution and reject the null hypothesis if the interval contains 0. 

For models with fixed effects, the hypotheses being tested at 0.05 level of significance 
are:  

𝐻𝑜:  𝛾(𝑘)𝑙 = 0, 𝑡ℎ𝑒 𝑙𝑡ℎ  𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝑖𝑠 𝑛𝑜𝑡 𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑡 𝑜𝑛 𝑡ℎ𝑒 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 

𝐻𝑎:  𝛾(𝑘)𝑙 ≠ 0, 𝑡ℎ𝑒 𝑙𝑡ℎ 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝑖𝑠 𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑡 𝑜𝑛 𝑡ℎ𝑒 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒  

For models with random effects, variance components of the nested factor are tested  at 
0.05 level of significance. The hypotheses being tested are: 

𝐻𝑜: 𝜎(𝑘)𝑙
2 = 0, 𝑡ℎ𝑒 𝑙𝑡ℎ  𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝑖𝑠 𝑛𝑜𝑡 𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑡 𝑜𝑛 𝑡ℎ𝑒 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 

𝐻𝑎: 𝜎(𝑘)𝑙
2 ≠ 0, 𝑡ℎ𝑒 𝑙𝑡ℎ 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝑖𝑠 𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑡 𝑜𝑛 𝑡ℎ𝑒 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒  

 
To evaluate the test, power and size of the test will be computed. The power of the test 

will be computed by constructing the confidence interval 200 times and the proportion of 
confidence interval that does not contain 0, or the rejected null hypothesis is the power of the 
test. For size of the test, data will be generated without the treatment effects and then 
confidence interval will be constructed using the steps in 1 to 4 in Section 3.2. The proportion 
of rejected null hypothesis is the size of the test.  

 
3.3 Simulation 

In order to conduct the estimation and hypothesis testing of the postulated model, data 
are simulated under different scenarios. The experimental design has 3 factors, two of which 
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are crossed to each other, and the third factor is nested to the other factor. Models with all 
fixed, all random effects, and mixed effects are considered. 

For the nonparametric part, a linear and nonlinear function is introduced to the model. 
The latter to impose heterogeneity and to verify the predictive ability of the postulated method 
when nonlinearity is present in the model. 

Furthermore, a constant m  and w are also imposed in the model such that the data 

generating process will become 𝑌(𝑖𝑗𝑘)𝑙 = 𝑓(𝑋(𝑖𝑗𝑘)𝑙) + m ∗ τ𝑗 + 𝑚 ∗ 𝛿𝑘 + (τ𝛿)𝑗𝑘 + 𝛾(𝑘)𝑙 + 𝑤 ∗

𝜖(𝑖𝑗𝑘)𝑙.  

The constant m is introduced to determine the effect of the covariate and factors, while 
the constant w is imposed to induce misspecification error. To simulate contamination in the 
covariate, a constant 𝛽 = 2 is introduced. Further, scenarios where the nonparametric part of 

the model is linear or nonlinear are also observed. Functional form of 𝑓(𝑋(𝑖𝑗𝑘)𝑙) = 𝛽𝑋(𝑖𝑗𝑘)𝑙 

indicates a linear form, while 𝑓(𝑋(𝑖𝑗𝑘)𝑙) = 𝐸𝑥𝑝𝑋(𝑖𝑗𝑘)𝑙 manifests nonlinearity of covariates.  

In addition, all the settings were simultaneously applied to different levels of percentage 
differences between the values assigned to levels of τ𝑗, 𝛿𝑘 , 𝑎𝑛𝑑  𝛾𝑘(𝑙). The values of the 

parameters τ𝑗, 𝛿𝑘 , 𝑎𝑛𝑑  𝛾𝑘(𝑙) in fixed effects model is summarized in Appendix. For the random-

effect models where τ𝑗 , 𝛿𝑘 , (τ𝛿)𝑗𝑘 , 𝑎𝑛𝑑  𝛾𝑘(𝑙) are random factors, all are assumed to be normally 

distributed.  
Table 2 shows the variables considered for the different scenarios and the distributions 

of models with random factors: 
Table 2. Variables and cases for simulation 

Variable Cases 

1. Distribution of 𝑋(𝑖𝑗𝑘)𝑙 Normal (8,2) 

2. Functional form of 𝑓(𝑋(𝑖𝑗𝑘)𝑙) 𝛽𝑋(𝑖𝑗𝑘)𝑙 

𝐸𝑥𝑝(𝛽𝑋(𝑖𝑗𝑘)𝑙) 

3. Value of 𝛽 1,2 

4. Distribution of τ𝑗 Normal (𝜇𝑗 , 𝜎𝑗) 

5. Distribution of δ𝑘 Normal (𝜇𝑘 , 𝜎𝑘) 

6. Distribution of interaction, (τ𝛿)𝑗𝑘 Normal (𝜇𝑗𝑘 , 𝜎𝑗𝑘) 

7. Distribution of nesting effect, 𝛾(𝑘)𝑙 Normal (𝜇(𝑘)𝑙 , 𝜎(𝑘)𝑙) 

8. Constant m, w 1,2 

9. Distribution of error term, 𝜖(𝑖𝑗𝑘)𝑙 Normal (0,1.5) 
Cauchy (0,1.5) 

10. Number of treatments p,q  2 levels for p and q 

11. Number of l or nested levels 1 level of nesting 

12. Replicate size 2 and 5 replicates 
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4. RESULTS AND DISCUSSION 

The power and size were compared with the parametric nested ANCOVA test to evaluate 
the proposed nonparametric test for a semiparametric mixed analysis of covariance for a 
nested design. The significance of the estimates of the nesting effect were being tested for 
the model with fixed effects, meanwhile, the significance of the variance components of the 
model with random effects were being tested.  

 
4.1 Overall Size of the Test 

The test is considered correctly sized if the estimated probability of rejecting a true null 
hypothesis is less than or equal to the level of significance set in the study, that is, 5%. In 
order to compute for the size, treatment effects in the proposed and baseline models were 
removed in the simulation of data and significance of the nesting effect were then tested.  

Based from the results, fixed effects model is not correctly sized. In fact, most of the time, 
the proposed test rejects the null hypothesis. The baseline test is also not correctly sized at 
0.05 level of significance but are much smaller than the proposed test.  

Table 3. Average size of the proposed and baseline tests under fixed effects model 

Scenario  Proposed Baseline 

Data without contamination     0.9744     0.1019  

Data with contamination     0.9884     0.0888  

Dominating covariate effect     0.9844     0.0922  

Minimal covariate effect     0.9784     0.0984  

Without misspecification error     0.9831     0.0981  

With misspecification error     0.9797     0.0925  

Normal errors     1.0000     0.0969  

Non-normal errors     0.9628     0.0938  

Linear covariate     0.9631     0.0922  

Non-linear covariate     0.9997     0.0984  

Replicate =2     0.9906     0.0928  

Replicate = 5     0.9722     0.0978  

 
 For random effects model, all scenarios in the proposed test procedure are correctly 
sized except in the case when replicates are set to 2.  
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Table 4. Average size of the proposed and baseline tests in different scenarios on random 
effects model 

Scenario Proposed Baseline 

Data without contamination     0.0413     0.0116  

Data with contamination     0.0363     0.0084  

Dominating covariate effect     0.0375     0.0113  

Minimal covariate effect     0.0400     0.0088  

Without misspecification error     0.0375     0.0094  

With misspecification error     0.0400     0.0106  

Normal errors     0.0428     0.0116  

Non-normal errors     0.0347     0.0084  

Linear covariate     0.0425     0.0091  

Non-linear covariate     0.0350     0.0109  

Replicate =2     0.0725     0.0050  

Replicate = 5     0.0191     0.0009  

 
Looking at mixed effects model wherein one factor is random (𝜏), the other factor is 

fixed (𝛿), and the nesting effect (𝛾) is random, the size of the proposed test is correctly sized 
except for the scenario when the replicate is only 2.   

Table 5. Average size of the proposed and baseline tests in different scenarios on mixed 
effects model 

Scenario Proposed Baseline 

Data without contamination 0.0269 0.0069 

Data with contamination 0.0316 0.0084 

Dominating covariate effect 0.0306 0.0044 

Minimal covariate effect 0.0278 0.0109 

Without misspecification error 0.0297 0.0088 

With misspecification error 0.0288 0.0066 

Normal errors 0.0300 0.0025 

Non-normal errors 0.0284 0.0128 

Linear covariate 0.0309 0.0106 

Non-linear covariate 0.0275 0.0047 

Replicate =2 0.0547 0.0066 

Replicate = 5 0.0038 0.0088 

 
4.2 Overall Power of the Test 

 The proposed test is evaluated based on its power. The higher the power, the higher 
the probability that the test arrived at a correct decision. To further evaluate the power of the 
proposed test, differences between the levels of each treatment were considered. The levels 
of percentage differences of the values between levels of each treatment effects taken into 
account were 10%, 30%, 50% and 100%.  

For the fixed effects and random effects model, the test is powerful in detecting the 
significance of the nesting effect in all scenarios compared to the baseline test. Notably, as 
the level of differences in treatment increases, power also increases. 
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Table 6. Average power of the proposed and baseline tests in different percentage 

differences in treatment levels on fixed effects model 

Differences in Treatment 
Levels Proposed Baseline 

10% 0.9928 0.1847 

30% 0.9948 0.3691 

50% 0.9969 0.4427 

100% 0.9978 0.5092 

 
Table 7. Average power of the proposed and baseline tests in different percentage 

differences in treatment levels on random effects model 

Differences in Treatment Levels Proposed Baseline 

10% 0.6420 0.4403 

30% 0.6831 0.5038 

50% 0.7217 0.5597 

100% 0.7931 0.6650 

 
For the case of the mixed effects model where one factor is random (𝜏), the second factor 

is fixed (𝛿), and the nesting factor is random (𝛾), power is relatively low compared to the model 
with all random factors. However, the proposed test procedure has greater power compared 
to the baseline test across all the levels of differences in the treatments.  

Table 8. Average power of the proposed and baseline tests in different percentage 
differences in treatment levels on mixed effects model 

Differences in Treatment Levels Proposed Baseline 

10% 0.3778 0.2750 

30% 0.3997 0.3106 

50% 0.4252 0.3441 

100% 0.4663 0.4043 

 
4.3 Effect of the degree of contribution of covariate  

To further evaluate the proposed test procedure, a constant m is introduced to determine 
the effect of the contribution of the covariate. This is simulated by setting the value of m=2 
when the role of the covariate is minimal, and m=1 when the covariate is dominating.  

 
Table 9 shows that the power of proposed test procedure for fixed effects model is 

generally much higher than the computed power of the baseline test. However, the baseline 
test procedure posted relatively higher power when the effect of the covariate is minimal 
compared to its power when the role of the covariate is dominating.  

 
Table 9. Average power of the proposed and baseline tests from the data with minimal 

and dominating covariate effects on fixed effects model 

Fixed by Fixed 
Dominating Covariate Minimal Covariate 

Proposed Baseline Proposed Baseline 

10% 0.9938 0.1738 0.9919 0.1956 

30% 0.9953 0.3563 0.9944 0.3819 

50% 0.9975 0.4347 0.9963 0.4506 

100% 0.9984 0.5075 0.9972 0.5109 
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When the treatment effects are all random as shown in Table 10, the proposed test 

procedure is powerful. Notably, as the percentage difference in the levels of treatment effects 
increases, the power of both the proposed test and baseline test also increases. However, the 
baseline test registered higher power when the effect of the covariate is dominant. On the 
other hand, the proposed test procedure resulted to higher power when the covariate is 
dominating (vs minimal covariate effect) when the level of percentage difference is at 100%.  

 
Table 10.  Average power of the proposed and baseline tests from the data with minimal 

and dominating covariate effect on random effects model 
 

Random by Random 
Dominating Covariate Minimal Covariate 

Proposed Baseline Proposed Baseline 

10% 0.6388 0.4444 0.6453 0.4363 

30% 0.6825 0.5116 0.6838 0.4959 

50% 0.7206 0.5647 0.7228 0.5547 

100% 0.7988 0.6691 0.7875 0.6609 

 
The test for mixed effects model had much lower power compared to the fixed and random 

effects, however, comparing with the baseline test for mixed effects model, the former 
performs better.  
Table 11. Average power of the proposed and baseline tests from the data with minimal and 

dominating covariate effect on mixed effects model 

Random by Fixed 

Dominating 
Covariate Minimal Covariate 

Proposed Baseline Proposed Baseline 

10% 0.3813 0.2834 0.3744 0.2665 

30% 0.3981 0.3134 0.4013 0.3078 

50% 0.4275 0.3444 0.4228 0.3438 

100% 0.4672 0.4013 0.4654 0.4074 

 
4.4 Effect of misspecification error 

 To induce misspecification, a constant w is imposed in the model, particularly to the 
error term to further evaluate the performance of the proposed test procedure. A value of w=2 
is multiplied to the error term to simulate misspecification while w=1 to simulate no 
misspecification error.  

 Table 12 shows that the proposed test procedure for fixed effects model is generally 
powerful with or without misspecification error. It can be observed that the power is higher 
when there is no misspecification error, both for the proposed and baseline test procedure.  
 

Table 12. Average power of the proposed and baseline tests from the data with and 
without misspecification error on fixed effects model 

Fixed by Fixed 
Without Misspecification Error With Misspecification Error 

Proposed Baseline Proposed Baseline 

10% 0.9953 0.2306 0.9903 0.1388 

30% 0.9966 0.4225 0.9931 0.3156 

50% 0.9975 0.4766 0.9963 0.4088 

100% 0.9991 0.5281 0.9966 0.4903 
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 Similarly, the power of the test decreases in the presence of misspecification error 
when all the treatment effects are random. Although the power of the test from the data with 
misspecification is still at par compared to the test from the data without misspecification error.  
 

Table 13. Average power of the proposed and baseline tests from the data with and 
without misspecification error on random effects model 

Random by 
Random 

Without Misspecification Error With Misspecification Error 

Proposed Baseline Proposed Baseline 

10% 0.6794 0.4931 0.6047 0.3875 

30% 0.7150 0.5463 0.6513 0.4613 

50% 0.7481 0.5953 0.6953 0.5241 

100% 0.8056 0.6916 0.7806 0.6384 

  
Table 14 shows that the test for the mixed effects model resulted to much lower power 

compared to the fixed and random effects model. Similarly, power is relatively higher when 
there is no misspecification error. The proposed test procedure also has higher power 
compared to the baseline test.  

 
Table 14. Average power of the proposed and baseline tests from the data with and 

without misspecification error on mixed effects model 

Random by Fixed 
Without Misspecification Error With Misspecification Error 

Proposed Baseline Proposed Baseline 

10% 0.4128 0.3180 0.3428 0.2319 

30% 0.4259 0.3488 0.3734 0.2725 

50% 0.4484 0.3781 0.4019 0.3100 

100% 0.4807 0.4266 0.4519 0.3820 

 
4.5 Effect of type of error 

  
The power of test is evaluated when the error term is normally distributed and when the 

error term is non-normally distributed, i.e. Cauchy distributed.  
Table 15 shows that when the error term is normally distributed, the proposed test 

procedure always detects significance of the nesting effect for fixed effects model. The 
baseline test also has high power which shows that when the treatment effects are all fixed, 
the null hypothesis is rejected most of the time. 

For non-normal errors, both the proposed test procedure and the baseline test are 
powerful and increases as the percentage differences between the levels of treatment effects 
increases.  

Table 15. Average power of the proposed and baseline tests from the data with normal 
and non-normal errors on fixed effects model 

Fixed by Fixed 
Normal Errors Non-Normal Errors 

Proposed Baseline Proposed Baseline 

10% 1.0000 0.2541 0.9856 0.1153 

30% 1.0000 0.4966 0.9897 0.2416 

50% 1.0000 0.5400 0.9938 0.3453 

100% 1.0000 0.5459 0.9956 0.4725 
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Power is also higher when the error are normal both for the proposed test procedure 
and the baseline test for random effects model. As percentage differences between the 
levels of treatment effect increases, the power also increases.  

Table 16. Average power of the proposed and baseline tests from the data with normal 
and non-normal errors on random effects model 

Random by 
Random 

Normal Errors Non-Normal Errors 

Proposed Baseline Proposed Baseline 

10% 0.7600 0.5844 0.5241 0.2963 

30% 0.7775 0.6338 0.5888 0.3738 

50% 0.7975 0.6794 0.6459 0.4400 

100% 0.8366 0.7447 0.7497 0.5853 

 
For mixed effects model, the proposed test resulted to higher power when the error is 

normally distributed except for the case when the percentage difference between the 
treatment levels is at 100%. The proposed test also resulted to higher power compared to the 
baseline test. 

Table 17. Average power of the proposed and baseline tests from the data with normal 
and non-normal errors on mixed effects model 

Random by 
Fixed 

Normal Errors Non-Normal Errors 

Proposed Baseline Proposed Baseline 

10% 0.4631 0.3771 0.2925 0.1728 

30% 0.4759 0.4147 0.3234 0.2066 

50% 0.4881 0.4425 0.3622 0.2456 

100% 0.5053 0.4734 0.4273 0.3352 

 
4.6 Effect of nonlinearity of covariates 
The power of the proposed and baseline test procedure is also evaluated when the 

nonparametric part of the model is a linear and nonlinear function. The latter is to impose 
heterogeneity in the postulated model and to evaluate the effect in the power of the test when 
there is a presence of nonlinearity. 
 Table 18 shows that the proposed test procedure detects significance in the nesting 
effect 100% of the time when the covariate is nonlinear for fixed effects model. In contrast, 
power is very low when the covariate is nonlinear for the baseline test.  

Table 18. Average power of the proposed and baseline tests from the data with linear and 

nonlinear covariate on fixed effects model 

Fixed by Fixed 
Linear Covariate Nonlinear Covariate 

Proposed Baseline Proposed Baseline 

10% 0.9859 0.2713 0.9997 0.0981 

30% 0.9897 0.6416 1.0000 0.0966 

50% 0.9938 0.7888 1.0000 0.0966 

100% 0.9956 0.9194 1.0000 0.0991 

 
 For the random effects model, the test is powerful when the covariate is linear. The 
proposed test also had higher power compared to the baseline test.  
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Table 19. Average power of the proposed and baseline tests from the data with linear and 
nonlinear covariate on random effects model 

Random by 
Random 

Linear Covariate Nonlinear Covariate 

Proposed Baseline Proposed Baseline 

10% 0.8353 0.6372 0.4488 0.2434 

30% 0.8706 0.7003 0.4956 0.3072 

50% 0.9013 0.7541 0.5422 0.3653 

100% 0.9484 0.8559 0.6378 0.4741 

 
 Table 20 shows that power is very low when the covariate is nonlinear, both for the 
proposed test procedure and the baseline test for mixed effects model. Notably, power is the 
same across the different percentage differences in the levels of treatment effects for the 
proposed test, except at 100% percentage difference. When the covariate is linear, the 
proposed test procedure registered higher power compared to the baseline.  

Table 20. Average power of the proposed and baseline tests from the data with linear 
and nonlinear covariate on mixed effects model 

Random by 
Fixed 

Linear Covariate Nonlinear Covariate 

Proposed Baseline Proposed Baseline 

10% 0.7291 0.5431 0.0266 0.0069 

30% 0.7728 0.6138 0.0266 0.0075 

50% 0.8238 0.6816 0.0266 0.0066 

100% 0.9051 0.8021 0.0275 0.0066 

 
4.7 Effect of replicate size 

 Table 21 shows that when the replicate size is 2, the proposed test procedure is 
relatively powerful. The baseline test, however, posted higher power when the number of 
replicate is five.  
Table 21. Average power of the proposed and baseline tests from the data with two and five 

replicates on fixed effects model 

Fixed by Fixed 
Replicate = 2 Replicate = 5 

Proposed Baseline Proposed Baseline 

10% 0.9963 0.1303 0.9894 0.2391 

30% 0.9981 0.3263 0.9916 0.4119 

50% 0.9981 0.4256 0.9956 0.4597 

100% 0.9981 0.5022 0.9975 0.5163 

  
 
Table 22. Average power of the proposed and baseline tests from the data with two and five 

replicates on random effects model 

Random by 
Random 

Replicate = 2 Replicate = 5 

Proposed Baseline Proposed Baseline 

10% 0.6425 0.4181 0.6416 0.4625 

30% 0.6841 0.4863 0.6822 0.5213 

50% 0.7253 0.5484 0.7181 0.5709 

100% 0.8009 0.6653 0.7853 0.6647 
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Table 23. Average power of the proposed and baseline tests from the data with two and 
five replicates on mixed effects model 

Random by 
Fixed 

Replicate = 2 Replicate = 5 

Proposed Baseline Proposed Baseline 

10% 0.3766 0.2418 0.3791 0.3081 

30% 0.3959 0.2825 0.4034 0.3388 

50% 0.4222 0.3219 0.4281 0.3663 

100% 0.4666 0.3863 0.4660 0.4224 
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5. SUMMARY AND RECOMMENDATION 

The results of the simulation show  that the proposed test is correctly sized for random 
and mixed effects model.  Size is also comparable to the baseline tests except for fixed effects 
model where the test is found to be incorrectly sized.  

The proposed test is also found to be more powerful than the baseline test across the 
different percentage differences in treatment levels compared to the baseline test procedure. 
In the presence of contamination of the covariate, dominating covariate effect, misspecification 
error and non-normal errors, the proposed test procedure performs better than the baseline 
test. 

However, in terms of linear covariate, the fixed effects model detects nesting effect 
100% of the time, while the baseline test had much lower power (less than 1%). Notably, the 
proposed test is more powerful when the replicate size is small (r=2), than when the replicate 
size is large (n=5). 
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APPENDIX 
Appendix A 
 
Table A1. Parameters used in different percentage differences for fixed effects model 
 

Percentage 
Difference 

𝝉 𝜹 𝝀 

Level 1 Level 2 Level 1 Level 2 L11 L12 L21 L22 

0% 2 2 5 5 7 7 7 7 

10% 2 2.2 5 5.5 7 7.7 8.47 9.31 

30% 2 2.6 5 6.5 7 9.1 11.83 15.379 

50% 2 3 5 7.5 7 10.5 15.75 23.625 

100% 2 4 5 10 7 14 21 31.5 

 
 
Table A2. Parameters used in different percentage differences for random effects 
model 

Percentage 
Difference 

𝝉 𝜹 𝝀 

Level 1 Level 2 Level 1 Level 2 L11 L12 L21 L22 

0% None None None None None None None None 

10% (0,2) (0,2.2) (0,5) (0,5) (50,20) (50,22) (50,24.2) (50,26.62) 

30% (0,2) (0,2.6) (0,5) (0,5.5) (50,20) (50,26) (50,33.8) (50,43.94) 

50% (0,2) (0,2.3) (0,5) (0,6.5) (50,20) (50,30) (50,45) (50,67.5) 

100% (0,2) (0,4) (0,5) (0,10) (50,20) (50,40) (50,80) (50,160) 

 
Table A3. Parameters used in different percentage differences for mixed effects model 

Percentage 
Difference 

𝝉 (random) 𝜹 (fixed) 𝝀(random) 

Level 1 Level 2 Level 1 Level 2 L11 L12 L21 L22 

0% None None 2 2 None None None None 

10% (8,2) (8,2.2) 2 2.2 (50,20) (50,22) (50,24.2) (50,26.62) 

30% (8,2) (8,2.6) 2 2.6 (50,20) (50,26) (50,33.8) (50,43.94) 

50% (8,2) (8,2.3) 2 3 (50,20) (50,30) (50,45) (50,67.5) 

100% (8,2) (8,4) 2 4 (50,20) (50,40) (50,80) (50,160) 

 
 

 

 

 

 

 

 
 


