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Introduction

• Discrete choice models are presented as development and renovation of the

classical choice theory. The model has been used extensively to discrete

choice processes in different fields such as econometrics and transportation.

• Abe (1999) developed a methodology for discrete choice data using the

generalized additive model (GAM).

• Giron (2010) assessed the feasibility and efficiency of using principal

components of the predictors in the generalized additive mode (GAM) for

discrete choice data and determine its capacity to manage drawbacks of high-

dimensional data.

• Torres (2013) extended the work of Giron (2010) by using generalized

adaptive sparse-PCA (GAS-PCA) as a data reduction tool and used GAM for

high dimensional discrete data.

• This study aims to conduct variable selection process on the explanatory

variables using two methods of sparse principal component analysis. The

selected variables from the above method will be tested for significance thru



Methodology

• The methodology starts with the data generating process to create a high 

dimensional data for discrete choice model. 
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Where,

• 𝑋𝑗
∗ matrix of predictors/characteristics of individual j

• Y the response variables, with possible values, Y1, Y2, …, Yr

• 𝛽𝑝 beta coefficients

• 𝜖𝑖 random error

The data consists of a single categorical response variable, Y, which can take on j possible alternatives, 

and p predictor variables, 𝑥1, 𝑥2, … , 𝑥𝑝, measured on n subjects, with population covariance matrix 𝑆 =The 

following notations will be used throughout this study:

• n sample size

• p number of dimensions/ predictors

• j number of categories of the response variable

• q number of sparse principal components selected



Methodology

• The proposed estimation proposed procedure composed of the following:

– Principal Component Analysis and Sparse Principal Component Analysis 

using 

• Penalized Matrix Decomposition Sparse Principal Component (PMD-

SPC)

• General Adaptive Sparse Principal Component Analysis (GAS-PCA)

– Local Scoring Algorithm and Backfitting Algorithm. 

The proposed estimation procedure is then followed by the hypothesis testing 

on significant predictors, controlling false discovery rate and power and size 

computation. The design of the simulation study is stated also including all 

settings for each scenario.



Simulation Study

• The data generation process involves five hidden factors that will generate 5 

groups of strongly correlated predictors. The latent factors L1, L2, L3, L4 and L5
represent the “important drivers” that predict the response variable. The latent 

factors were generated such that:

• L1~N(50,40
2), L2~N(50,20

2), L3~N(50,10
2), L4~N(50,5

2), L5~N(50,5
2)

cor(L1, L2, L4, L5|L3) =

1
0
0.6
0
0

0
1

−0.5
0
0

0.6
−0.5
1
0
0

0
0
0
1
0

0
0
0
0
1

• Given those specifications, L1 and L2 are independent of each other, L3 is 

moderately correlated to L1 and L2. On the other hand, L4 and L5 are 

independent on the other hidden factors.



Simulation Study

Case Relative Contribution by Group

G 1 G 2 G 3 G 4 G 5

200 –

200

10%

(20)

15%

(30)

15%

(30)

25%

(50)

35%

(70)

200 –

2000

1%

(20)

1.5%

(30)

1.5%

(30)

48%

(960)

48%

(960)

Case Relative Contribution by Group

G 1 G 2 G 3 G 4 G 5

210 –

210

10%

(21)

10%

(21)

20%

(42)

30%

(63)

30%

(63)

210 –

2100

1%

(21)

1%

(21)

2%

(42)

48%

(1008)

48%

(1008)

Table1. Scenario Settings for Dichotomous Response Simulation Study

Table 2. Scenario Settings for 3-category Response Simulation Study

• For NHD scenarios, L1, L2 and L3 will 

each have 8 significant predictors 

while L4 and L5 will each have 4 

significant predictors. For HD 

scenarios, all 5 groups will have 8 

significant predictors each.

• We then generate 5000 

observations from each predictor 

and compute for Y∗ = α + σi fi Xi +
ϵ where ϵ is from a Gumbel 

distribution.



Simulation Study

Balanced (50-50) Let

Y∗(i) = ቊ
1, for i = 1,2, … , 2400
2, for i = 2601, 2602, … , 5000

Moderately Unbalanced (70-30) Let

Y∗(i) = ቊ
1, for i = 1,2, … , 3360
2, for i = 3561, 3562, … , 5000

Severely Unbalanced (10-90) Let

Y∗(i) = ቊ
1, for i = 1,2, … , 480
2, for i = 681, 682,… , 5000

We trimmed the middle 200 observations to put 

some threshold between the boundary of the 

two categories inducing the dichotomy. The 

population size for each distribution of the 

dichotomous category is 4800.

Balanced (33-33-34) Let

Y∗(i) = ቐ
1, for i = 1,2, … , 1500
2, for i = 1751, 1752,… , 3250
3, for i = 3501, 3502,… , 5000

Moderately Unbalanced (60-20-20) Let

Y∗(i) = ቐ
1, for i = 1,2, … , 2700
2, for i = 2951, 2952,… , 3850
3, for i = 4101, 4102,… , 5000

Severely Unbalanced (70-20-10) Let

Y∗(i) = ቐ
1, for i = 1,2, … , 3150
2, for i = 3401, 3402,… , 4300
3, for i = 4551, 4552,… , 5000

We trimmed the middle 250 observations to put some 

threshold between the boundary of the 1st and 2nd

categories and 250 trimmed observations between 2nd

and 3rd category. The population size for each 

distribution of the 3-category is 4500.



Simulation Study

Benchmark/ Baseline Test

To further evaluate the 

performance of the proposed 

test, a benchmark or baseline 

test was also implemented 

together with the proposed test 

using the same set of generated 

data. The baseline test that will 

be used Bonferroni Test for 

family wise error rate.

Power and size will be 

computed for each of the 

predictors simultaneously. 

The proposed method used two different 

transformations of the utility function: linear 

and exponential. The proposed method was 

not able to detect significant predictors when 

there is an exponential transformation. In all 

exponential transformation of the utility 

function, only the predictors from the  L1
were retained after the dimension reduction 

process. However, the backfitting algorithm 

only produced very few (min: 0; max: 4) 

significant predictors and were all eventually 

rejected by the BH procedure in the end.

Results and Discussions



Results and Discussions

• The proposed method also was not able to detect any significant predictors 

coming from L4 and L5 groups. All significant predictors selected by the proposed 

method came from L1 to L3 group most of the time. The most consistent group 

with the highest number of predictors selected by PMD-SPC and GAS-PCA is L1.

• The p-values computed came from the linear component of the ANOVA table. 

The p-values in the nonparametric part are always nonsignificant.

• For the estimated power and size for dichotomous and 3-category response HD 

case using GAS-PCA, GAS-PCA failed to reduce the dimensionality of the 

predictors since HPCs available for use can only run a batch for 7 days but in 

that period, GAS-PCA failed to do so. Power and size cannot be computed for 

HD cases of GAS-PCA. This is recommended for further studies. 



Results and Discussions

• In all cases using PMD-SPC, the proposed test 

is not always correctly sized. In fact, the baseline 

test is also not correctly sized at 0.05 level 

sometimes. The following tables provide a 

summary of the size for each variable.

• In all cases using GAS-PCA, the proposed test is 

not always correctly sized. In most cases, the 

baseline and the proposed method have the 

same size. In the case of 3-category response 

where n=p, only 1 not truly significant variable 

was selected by the GAS-PCA at 95% variance 

explained.



Results and Discussions

• For the estimated power using 

PMD-SPC, the test is powerful in 

detecting the significant predictors 

in all scenarios compared to the 

baseline test. It should be noted 

that as distribution becomes more 

unbalanced, the power increases.

• In all cases using GAS-PCA n=p, 

the test is powerful in detecting 

the significant predictors in all 

scenarios compared to the 

baseline test.

• The simulation showed that the proposed 

test is somehow correctly sized only in 

balanced cases. In all unbalanced cases, 

the proposed test is always incorrectly 

sized. Even though the test is incorrectly 

sized, the baseline test is also incorrectly 

sized and the proposed method showed a 

comparable size compared to the 

baseline test.

• The result of the simulation shows that the 

proposed test is found to be more 

powerful than the baseline test across 

different parameters and number of 

variables involved.  

Summary and Conclusion
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