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ABSTRACT 
 Discrete choice models are commonly applied in decision making contexts. But problems 
in predictive performance, variable selection and/or model interpretation arise when the 
number of predictors greatly exceeds the sample size. In this study, such problems are 
mitigated via a heuristic approach combining dimension reduction and multiple 
comparisons correction. As a pre-process for variable selection, dimension reduction on 
high-dimensional inputs of the discrete choice model is conducted. Variables that were 
selected are then subjected to a local scoring algorithm with backfitting. To lower the false 
discovery rate, the Benjamini-Hochberg (BH) procedure is then implemented on the 
significant predictors resulting from the backfitting. Simulation studies show that most of 
the balanced cases are correctly sized, and consistently, the proposed test procedure is 
more powerful than the ordinary Bonferroni multiple comparisons testing procedure.  

 
Keywords: discrete choice model, backfitting algorithm, high dimensional data, 
dimension reduction, variable selection, multiple testing, false discovery rate, BH 
procedure 

 
1. INTRODUCTION 
 

Discrete choice models are presented as development and renovation of the classical 
choice theory. These models have overcome the rigidities and inadequacies of consumer 
behavior study by mentioning the problems of economic agent choices in random specific 
environment for each situation involving the choice between mutually exclusive alternatives 
(Aloulou, 2018). The model has been used extensively to discrete choice processes in different 
fields such as econometrics (McFadden, 1974; Manski and McFadden, 1981) and transportation 
(Ben-Akiva and Lerman, 1985) to name some. These resulted with great success because of 
the model’s analytical and computational tractability (Abe, 1999). 

 
Abe (1999) developed a methodology for discrete choice data using the generalized 

additive model (GAM). This method incorporates an additive predictor instead of a linear 
predictor for the Multinomial logit (MNL) model. This relaxes the linear-in parameter constraint 
of the MNL model while circumventing the curse of dimensionality which is the drawback of fully 
nonparametric multivariate MNL models (Giron, 2010).  

 
Giron (2010) assessed the feasibility and efficiency of using principal components of the 

predictors in the generalized additive mode (GAM) for discrete choice data and determine its 
capacity to manage drawbacks of high-dimensional data. Giron (2010) showed that the principal 
component analysis could be used in dimension reduction for high-dimensional discrete choice 
data and resulted with comparable results with the original multinomial logit model and the 
generalized additive model for discrete choice data. 

 
Torres (2013) extended the work of Giron (2010) by using generalized adaptive sparse-

PCA (GAS-PCA) as a data reduction tool and used GAM for high dimensional discrete data. 
Torres (2013) compared the results to PCA for estimating high-dimensional discrete choice data 
and yielded comparable predictive ability. Also, GAS-PCA yielded very sparse PC loadings 
compared to the generalized additive model using principal component analysis (Torres, 2013). 
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A variable selection procedure is being proposed using two methods of dimension 
reduction through sparse principal components: The Penalized Matrix Decomposition and the 
Generalized Adaptive Sparse Principal Component analysis.  

 
This study aims to conduct variable selection process on the explanatory variables using 

two methods of sparse principal component analysis. The selected variables from the above 
method will be tested for significance thru the local scoring algorithm and the backfitting 
algorithm. Lastly, the proposed test aims to mitigate the false discovery rate which is very 
common in high-dimensional discrete choice data.  

 
2. METHODOLOGY 
 

The methodology starts with the data generating process to create a high dimensional 
data for discrete choice model. The proposed estimation proposed procedure composed of the 
following: Principal Component Analysis, Sparse Principal Component Analysis using Penalized 
Matrix Decomposition Sparse Principal Component (PMD-SPC) and General Adaptive Sparse 
Principal Component Analysis (GAS-PCA), Local Scoring Algorithm and Backfitting Algorithm. 
The proposed estimation procedure is then followed by the hypothesis testing on significant 
predictors, controlling false discovery rate and power and size computation. The design of the 
simulation study is stated also including all settings for each scenario.  

 
2.1 Data Generating Process 
Let the postulated model be 

𝑃(𝑌 = 𝑦𝑗|𝑋 = 𝑥𝑗
∗) =

𝑒𝑥𝑝 (𝑋𝑗
∗𝛽𝑝)

∑ 𝑒𝑥𝑝 {𝑋𝑖
∗𝛽𝑝 + 𝜖𝑖}

𝐽
𝑖=1

 𝑖 = 1,2, . . 𝐽 

Where, 
𝑋𝑗

∗   matrix of predictors/characteristics of individual j 

Y  the response variables, with possible values, Y1, Y2, …, Yr 
𝛽𝑝   beta coefficients 

𝜖𝑖  random error 
The data consists of a single categorical response variable, Y, which can take on j 

possible alternatives, and p predictor variables, 𝑥1, 𝑥2, … , 𝑥𝑝, measured on n subjects, with 

population covariance matrix 𝑆 =
1

𝑛
∑ (𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅)𝑇𝑛

𝑖=1 . 

The following notations will be used throughout this study: 
n  sample size 
p  number of dimensions/ predictors 
j  number of categories of the response variable 
q  number of sparse principal components selected 

 
2.2 Proposed Estimation Method 
 

2.2.1 Principal Component Analysis on the p Predictors 
Principal component analysis is performed to reduce the number of predictors. Principal 

Component analysis will be performed on the p predictors. A number of q principal components 
was selected according to the following guidelines (Giron, 2010) and (Joliffe, 2002): 

 
For the cases where n=p and n<p using PMD-SPC: 
1. Include the first q PCs wherein the cumulative percentage of the total variation 

contributed by these PCs is 40%. 
2. Include the first q PCs wherein the cumulative percentage of the total variation 

contributed by these PCs is at least 60%  
For the cases where n=p and n<p using GAS-PCA: 
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3. Include the first q PCs wherein the cumulative percentage of the total variation 
contributed by these PCs is 90%. 

4. Include the first q PCs wherein the cumulative percentage of the total variation 
contributed by these PCs is at least 95%  

 
2.2.2 Sparse Principal Component Analysis on the p Predictors 
The algorithm proposed by Torres (2013) on the procedure of finding the inverse 

covariance matrix will be used for the GAS-PCA for high dimensional predictors. Since the 
covariance matrix for high dimensional predictors will tend to be singular due to collinearity, the 
inverse covariance matrix will be impossible to determine. The sparse inverse covariance 
estimate (SICE) method will be used to get an estimate of the inverse covariance matrix. (Torres, 
2013). 

The process of Witten et al. in computing the sparse principal components using 
Penalized Matrix Decomposition will be utilized as a process of dimension reduction similar to 
the GAS-PCA. Such method will be called PMD-SPC.  
 Since the sparse principal components are formed as a sparsely weighted linear 
combination of the observed variables 𝒁 = 𝐗𝐁. The data can be approximately rotated back as 

𝑿̃ = 𝐙𝐀𝐓 (Erichson et al., 2018). These X’s are now the reduced original predictors that will be 
used in the local scoring algorithm and backfitting algorithm. A more detailed procedure of the 
local scoring algorithm and backfitting algorithm is provided in Giron (2010) and Torres (2013). 

 
 
2.3 Hypothesis Test on Significant predictors 

 
Given the postulated model on Xs, we test the following hypothesis: 

𝐻𝑜
(𝑖)

: 𝛽𝑖 = 0  vs  𝐻𝑎
(𝑖)

: 𝛽𝑖 ≠ 0 

For 𝑖 = 1,2, … , 𝑝 
where 𝛽𝑖 are the estimated parameter values from the model. 
 

For testing the above hypothesis, the p-values of the significant predictors will be 
computed. The p-values are computed using the F-test. Each term in the model are separated 
into two: projection part and the nonparametric part. This causes two ANOVA objects in which 
one is the linear component and the other is the nonparametric component. A type of score test 
is performed in each of the nonparametric terms. The nonparametric component is set to zero, 
and the linear part is updated, holding the other nonparametric terms fixed. This is done 
efficiently and simultaneously for all terms (Hastie, 1991).  

 
2.3.1 False Discovery Rate Controlling Procedure 

 
This follows from the false discovery rate procedure proposed by Benjamini and Hochberg 

(1995). A more detailed procedure can be found in Benjamini and Hochberg (1995). The 
procedure has the advantage of not assuming any parametric model on the data and also 
controls the false discovery rate which is common to high dimensional data. 

 
2.3.2 Power and Size Computation 

 
Power is computed as the number of times a significant predictor was considered as 

significant in 200 replicates for the n=p (NHD) cases and 100 replicates for the n<<p (HD) cases. 
Power is computed by getting the proportion of replicates wherein the significant predictors were 
considered significant or the number of times the null hypothesis was rejected in the assigned 
significant predictors. The design assigns the first 8 predictors for 𝐿1, 𝐿2 and 𝐿3 latent factors and 
first 4 in 𝐿4  and 𝐿5 latent factors for NHD cases. Whereas for the HD cases, the first 8 predictors 
were assigned to be significant for all latent factors. 

Size is computed as the number of times a nonsignificant predictor was considered as 
significant in 200 replicates for the NHD cases and 100 replicates for the HD cases. This is 
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computed by getting the proportion of replicates wherein the nonsignificant predictors were 
considered as significant. This is computed individually for each variable not assigned as 
significant i.e., all variables except the first 8 variables of each latent factor. 

 
2.4 Design of Simulation Study 

 
The data generation process involves five hidden factors that will generate 5 groups of 

strongly correlated predictors. The simulation study is similar to that of Zou and Hastie (2005), 
Lansangan and Barrios (2017) and Supranes and Lansangan (2017). The latent factors 
𝐿1, 𝐿2, 𝐿3, 𝐿4 and 𝐿5 represent the “important drivers” that predict the response variable. The latent 
factors were generated such that: 

 

𝐿1~𝑁(50,402), 𝐿2~𝑁(50,202), 𝐿3~𝑁(50,102), 𝐿4~𝑁(50,52), 𝐿5~𝑁(50,52) 

𝑐𝑜𝑟(𝐿1, 𝐿2, 𝐿4, 𝐿5|𝐿3) =

[
 
 
 
 

1
0

0.6
0
0

  

0
1

−0.5
0
0

 

0.6
−0.5

1
0
0

  

0
0
0
1
0

  

0
0
0
0
1]
 
 
 
 

 

 
Given those specifications, 𝐿1 and 𝐿2 are independent of each other, 𝐿3 is moderately 

correlated to 𝐿1 and 𝐿2. On the other hand, 𝐿4 and 𝐿5 are independent on the other hidden 
factors. 

 
Each Xij represents a measurable manifestation of a latent factor. Since 𝑋𝑖𝑗𝑠 are linear 

functions of a latent factor, variable generated from the same latent factor are strongly correlated 
with each other. Predictors from the first two latent factors (𝐿1 and 𝐿2) are moderately correlated 
to predictors from 𝐿3. Predictors from 𝐿4 and 𝐿5 are independent from the others. 

 
Since the groups 𝐿1 − 𝐿5 create the total population, each group will have different 

variances. All groups have a mean of 50 which is necessary to avoid negative values and for the 
Cholesky decomposition to be performed.  

 
Two different scenarios in terms of the number of variables are considered: NHD (n=p) 

case and HD (n<<p) case. Specifically, 200 samples with 200 predictors (NHD) and 200 samples 
with 2000 predictors (HD) for the dichotomous response and 210 samples with 210 predictors 
(NHD) and 210 samples with 2100 predictors (HD) for 3-category response. Tables 1 and 2 
shows the simulated relative contribution of each group for each scenario. The relative 
contribution is the percentage of the number of predictors that came from each latent factor. 

 
Table1. Scenario Settings for Dichotomous Response Simulation Study 

Case Relative Contribution by Group 

Group 1 Group 2 Group 3 Group 4  Group 5 

200 – 200 10% 
(20) 

15% 
(30) 

15% 
(30) 

25% 
(50) 

35% 
(70) 

200 – 2000 1% 
(20) 

1.5% 
(30) 

1.5% 
(30) 

48% 
(960) 

48% 
(960) 

 
Table 2. Scenario Settings for 3-category Response Simulation Study 

Case Relative Contribution by Group 

Group 1 Group 2 Group 3 Group 4 Group 5 

210 – 210 10% 
(21) 

10% 
(21) 

20% 
(42) 

30% 
(63) 

30% 
(63) 

210 – 2100 1% 
(21) 

1% 
(21) 

2% 
(42) 

48% 
(1008) 

48% 
(1008) 
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For NHD scenarios, 𝐿1, 𝐿2 and 𝐿3 will each have 8 significant predictors while 𝐿4 and 𝐿5 
will each have 4 significant predictors. For HD scenarios, all 5 groups will have 8 significant 
predictors each. 𝐿1 to 𝐿3 will either follow U(8,12) or U(20,30) while 𝐿4 and 𝐿5 will either follow 
U(2,4) or U(5,10). 

 
We then generate 5000 observations from each predictor and compute for 𝑌∗ = 𝛼 +

∑ 𝑓𝑖(𝑋𝑖)𝑖 + 𝜖 where 𝜖 is from a Gumbel distribution. We use a Gumbel distribution for the error 
term as the generalized extreme value distribution which is common in discrete choice model. 
We arrange the data from smallest to largest value with respect to 𝑌∗. For the dichotomous 
category, the following are the setting for each distribution: 

 
Balanced (50-50)  Let 

𝑌∗
(𝑖) = {

1,                    𝑓𝑜𝑟 𝑖 = 1,2, … ,2400
2,   𝑓𝑜𝑟 𝑖 = 2601, 2602,… , 5000

 

Moderately Unbalanced (70-30)Let 

𝑌∗
(𝑖) = {

1,                    𝑓𝑜𝑟 𝑖 = 1,2, … ,3360
2,   𝑓𝑜𝑟 𝑖 = 3561, 3562,… , 5000

 

Severely Unbalanced (10-90) Let 

𝑌∗
(𝑖) = {

1,                 𝑓𝑜𝑟 𝑖 = 1,2, … ,480
2,   𝑓𝑜𝑟 𝑖 = 681, 682,… , 5000

 

  
We trimmed the middle 200 observations to put some threshold between the boundary 

of the two categories inducing the dichotomy. The population size for each distribution of the 
dichotomous category is 4800. 

 
 For the 3-category, the following are the settings for each distribution: 
Balanced (33-33-34)    Let 

𝑌∗
(𝑖) = {

1,                    𝑓𝑜𝑟 𝑖 = 1,2,… ,1500
2,   𝑓𝑜𝑟 𝑖 = 1751, 1752,… , 3250
3,   𝑓𝑜𝑟 𝑖 = 3501, 3502,… , 5000

 

 
Moderately Unbalanced (60-20-20)  Let 

𝑌∗
(𝑖) = {

1,                      𝑓𝑜𝑟 𝑖 = 1,2,… ,2700
2,   𝑓𝑜𝑟 𝑖 = 2951, 2952,… , 3850
3,   𝑓𝑜𝑟 𝑖 = 4101, 4102,… , 5000

 

 
Severely Unbalanced (70-20-10)  Let 

𝑌∗
(𝑖) = {

1,                    𝑓𝑜𝑟 𝑖 = 1,2,… ,3150
2,   𝑓𝑜𝑟 𝑖 = 3401, 3402,… , 4300
3,   𝑓𝑜𝑟 𝑖 = 4551, 4552,… , 5000

 

We trimmed the middle 250 observations to put some threshold between the boundary 
of the 1st and 2nd categories and 250 trimmed observations between 2nd and 3rd category. The 
population size for each distribution of the dichotomous category is 4500. 
 

Simulation scenarios are conducted for both PMD-SPC and GAS-PCA. Samples of 
dichotomous and 3-category response variables were simulated according to these scenarios. 
These scenarios are summarized in the table below. 
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Table 3. Summary of Simulation Scenarios 

 Dichotomous Response 3-category Response 

Transformation of Utility 
function values 

Linear  
𝑌∗ = 𝑋𝑖𝛽𝑖 + 𝜖  
 
Exponential 

𝑌∗ = exp(𝑋𝑖𝛽𝑖) + 𝜖 

Linear  
𝑌∗ = 𝑋𝑖𝛽𝑖 + 𝜖  
 
Exponential 
𝑌∗ = exp(𝑋𝑖𝛽𝑖) + 𝜖 

Sample size (n) and 
number of predictors (p) 

n(200) < p(2000),  
 
n(200)=p(200) 

n(210) < p(2100),  
 
n(210)=p(210) 

Distribution of the 
observations in the 
response category 

(Cat 1, Cat 2) 
Balanced (50%, 50%) 
 
Moderately unbalanced (70%, 
30%) 
 
Highly unbalanced (90%, 10%) 

(Cat 1, Cat 2, Cat 3) 
 
Balanced (33%, 33%, 34%) 
 
Moderately unbalanced 
(60%, 20%, 20%) 
 
Highly unbalanced (70%, 
20%, 10%) 

 
 
2.5 Benchmark/ Baseline Test 

To further evaluate the performance of the proposed test, a benchmark or baseline test 
was also implemented together with the proposed test using the same set of generated data. 
The baseline test that will be used Bonferroni Test for family wise error rate. 

 
 Some of the values that will also be considered are the following: 
a. The number of times it was not removed by PMD-SPC and GAS-PCA. 
b. The number of times each remaining predictor from the initial dimension reduction 

was considered as significant by the backfitting algorithm. 
c. The number of times the Benjamini-Hochberg procedure rejected the significant 

predictors considered by the backfitting algorithm. 
 

Power and size will be computed for each of the predictors simultaneously.  
 

3. RESULTS AND DISCUSSION 
 

 The performance of the proposed test was evaluated by computing its size and power 
under different scenario settings. The results are organized into two sections based on SPCA 
method: PMD and GAS sections. For each SPCA subsections, results will be split into two: the 
truly significant predictors and the not truly significant predictors both covering the NHD and the 
HD cases. 

 
 The proposed method used two different transformations of the utility function: linear and 

exponential. The proposed method was not able to detect significant predictors when there is an 
exponential transformation. In all exponential transformation of the utility function, only the 
predictors from the  𝐿1 were retained after the dimension reduction process. However, the 
backfitting algorithm only produced very few (min: 0; max: 4) significant predictors and were all 
eventually rejected by the BH procedure in the end. Thus, the paper will only report cases 
wherein the transformation of the utility function is linear. 

 
 The proposed method also was not able to detect any significant predictors coming from 

𝐿4 and 𝐿5 groups. All significant predictors selected by the proposed method came from 𝐿1 to 𝐿3 
group most of the time. The most consistent group with the highest number of predictors selected 
by PMD-SPC and GAS-PCA is 𝐿1. In this light, the paper will report the individual power for each 

variable in the 𝐿1 group. 
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The p-values computed came from the linear component of the ANOVA table. The p-values 
in the nonparametric part are always nonsignificant. 

 
3.1 Estimated Size of the Test 

In order to compute for the size, the not truly significant variables that were selected by 
the PMD-SPC and GAS-PCA are tested for significance. The variables in 𝐿1 group will be 
reported since these variables are selected most of the time after dimension reduction. In the 
GAS-PCA, the case where the variance explained is 95% will only be reported since the case 
where the variance explained is 90% selected very few variables from the 𝐿1 group (only 4 
variables).  
 

3.1.1 Estimated Size using PMD-SPC 
 

In all cases using PMD-SPC, the proposed test is not always correctly sized. In fact, the 
baseline test is also not correctly sized at 0.05 level sometimes. The following tables provide a 
summary of the size for each variable. 
 

Table 4. Estimated Size of the test for balanced, moderately unbalanced and severely 
unbalanced for dichotomous response for NHD and HD cases using PMD-SPC 

 Balanced Moderately Unbalanced Severely Unbalanced 

 NHD HD NHD HD NHD HD 
Va Prop Base Prop Base Prop Base Prop Base Prop Base Prop Base 

𝑋9 0.042 0.041 0.025 0.010 0.099 0.078 0.102 0.073 0.412 0.32 0.34 0.276 

𝑋10 0.044 0.06 0.031 0.012 0.084 0.060 0.092 0.067 0.342 0.256 0.361 0.287 

𝑋11 0.053 0.049 0.039 0.025 0.128 0.094 0.112 0.064 0.431 0.325 0.421 0.282 

𝑋12 0.050 0.054 0.047 0.016 0.101 0.084 0.115 0.079 0.375 0.287 0.363 0.277 

𝑋13 0.047 0.039 0.021 0.015 0.127 0.102 0.106 0.067 0.378 0.306 0.341 0.252 

𝑋14 0.062 0.052 0.036 0.016 0.124 0.076 0.089 0.051 0.370 0.267 0.381 0.312 

𝑋15 0.055 0.067 0.033 0.022 0.118 0.092 0.104 0.065 0.391 0.304 0.394 0.297 

𝑋16 0.046 0.054 0.042 0.028 0.110 0.092 0.103 0.065 0.392 0.324 0.378 0.282 

𝑋17 0.056 0.047 0.073 0.032 0.142 0.111 0.143 0.098 0.400 0.290 0.365 0.284 

𝑋18 0.052 0.043 0.029 0.016 0.125 0.080 0.135 0.087 0.409 0.319 0.353 0.296 

𝑋19 0.073 0.067 0.051 0.026 0.136 0.124 0.155 0.095 0.426 0.290 0.453 0.348 

𝑋20 0.047 0.039 0.088 0.043 0.124 0.102 0.133 0.095 0.422 0.316 0.392 0.317 

 
 

Table 5. Estimated Size of the test for balanced, Moderately Unbalanced and Severely 
Unbalanced for 3-category response for NHD and HD cases using PMD-SPC 

 

 Balanced Moderately Unbalanced Severely Unbalanced 

 NHD HD NHD HD NHD HD 
Va Prop Base Prop Base Prop Base Prop Base Prop Base Prop Base 

𝑋9 0.044 0.015 0.030 0.018 0.161 0.131 0.073 0.047 0.247 0.217 0.208 0.170 

𝑋10 0.041 0.012 0.063 0.030 0.107 0.081 0.106 0.055 0.245 0.203 0.220 0.185 

𝑋11 0.078 0.036 0.022 0.005 0.160 0.114 0.086 0.049 0.257 0.208 0.217 0.177 

𝑋12 0.027 0.013 0.057 0.021 0.143 0.098 0.084 0.043 0.281 0.223 0.235 0.189 

𝑋13 0.045 0.010 0.015 0.008 0.169 0.125 0.108 0.072 0.273 0.234 0.264 0.196 

𝑋14 0.039 0.020 0.054 0.030 0.169 0.114 0.121 0.068 0.282 0.226 0.233 0.186 

𝑋15 0.053 0.031 0.056 0.023 0.171 0.120 0.083 0.058 0.247 0.181 0.303 0.241 

𝑋16 0.05 0.020 0.021 0.005 0.155 0.100 0.132 0.096 0.294 0.238 0.218 0.181 

𝑋17 0.064 0.023 0.028 0.008 0.175 0.130 0.123 0.068 0.272 0.211 0.314 0.242 

𝑋18 0.051 0.023 0.058 0.022 0.197 0.146 0.098 0.07 0.307 0.255 0.260 0.210 

𝑋19 0.076 0.041 0.093 0.041 0.188 0.112 0.177 0.136 0.236 0.193 0.263 0.219 

𝑋20 0.074 0.032 0.098 0.067 0.178 0.122 0.235 0.162 0.314 0.248 0.266 0.246 

𝑋21 0.071 0.055 0.121 0.043 0.257 0.188 0.204 0.123 0.325 0.267 0.366 0.274 
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3.1.2 Estimated Size of Dichotomous response n=p using GAS-PCA 
 
Based from the results, the proposed test is not always correctly sized. It can be seen 

that the in most cases, the baseline and the proposed method have the same size. Most of the 
cases also are incorrectly sized also. In the case of 3-category response where n=p, only 1 not 
truly significant variable was selected by the GAS-PCA at 95% variance explained. In all cases, 
the proposed test is incorrectly sized.  

 
For the estimated power and size for dichotomous and 3-category response HD case 

using GAS-PCA, GAS-PCA failed to reduce the dimensionality of the predictors since HPCs 
available for use can only run a batch for 7 days but in that period, GAS-PCA failed to do so. 
Power and size cannot be computed for HD cases of GAS-PCA. This is recommended for further 
studies.  
 

Table 6. Estimated Size of the test for balanced, Moderately Unbalanced and Severely 
Unbalanced for dichotomous response for n=p using GAS-PCA 

 Balanced Moderately Unbalanced Severely Unbalanced 

Variable Proposed Baseline Proposed Baseline Proposed Baseline 

𝑋9 0.098 0.073 0.179 0.119 0.407 0.264 

𝑋10 0.125 0 0.071 0.071 0.368 0.316 

𝑋11 0 0 0.167 0.167 0.556 0.444 

𝑋12 0 0 0.167 0.167 0.667 0.667 

𝑋13 0 0 0.167 0.167 0.556 0.556 

𝑋14 0 0 0.333 0.167 0.444 0.444 

𝑋15 0 0 0.333 0.333 0.444 0.444 

𝑋16 0 0 0.167 0 0.889 0.556 

𝑋17 0.167 0 0.167 0.167 0.667 0.556 

𝑋18 0.167 0.167 0.167 0.167 0.444 0.333 

𝑋19 0 0 0.167 0.167 0.444 0.444 

𝑋20 0.333 0 0.333 0.333 0.333 0.222 

 
 
 
 

Table 7. Estimated Size of the test for balanced, Moderately Unbalanced and Severely 
Unbalanced for 3-category response for n=p using GAS-PCA 

 Balanced Moderately 
Unbalanced 

Severely Unbalanced 

Variable Proposed Baseline Proposed Baseline Proposed Baseline 

𝑋9 0.152 0.043 0.143 0.06 0.238 0.142 

 
3.2 Estimated Power of the Test 

 
The proposed test is evaluated based on its power. To evaluate the power, different 

explained variances were considered. The distribution of the beta coefficients is also considered. 
The distribution that were taken into account were 𝛽𝑖~𝑈(8,12) and  𝛽𝑖~𝑈(20,30) The variance 
explained is at 40% and 60% for PMD-SPC and 90% and 95% for GAS-PCA. The power and 
size of each variable in 𝐿1 group is reported since this group is the most consistent latent factor 

chosen by both PMD-SPC and GAS-PCA. The results for the 𝐿2 and 𝐿3 group can be seen in 
the full paper. 

 
3.2.1  Estimated Power using PMD-SPC 
 
For the estimated power using PMD-SPC, the test is powerful in detecting the significant 

predictors in all scenarios compared to the baseline test. It should be noted that as distribution 
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becomes more unbalanced, the power increases. Tables are provided for summary of the power 
for each variable. 

 
Table 8. Estimated Power of the test for balanced, Moderately Unbalanced and Severely 

Unbalanced for dichotomous response for NHD and HD cases using PMD-SPC 
 

 Balanced Moderately Unbalanced Severely Unbalanced 

 NHD HD NHD HD NHD HD 
Va Prop Base Prop Base Prop Base Prop Base Prop Base Prop Base 

𝑋1 0.644 0.554 0.700 0.605 0.591 0.433 0.637 0.549 0.803 0.760 0.718 0.655 

𝑋2 0.435 0.281 0.488 0.315 0.433 0.318 0.445 0.273 0.703 0.640 0.580 0.435 

𝑋3 0.286 0.144 0.276 0.130 0.307 0.200 0.363 0.230 0.594 0.514 0.428 0.318 

𝑋4 0.217 0.123 0.208 0.110 0.250 0.170 0.268 0.160 0.509 0.416 0.315 0.235 

𝑋5 0.169 0.074 0.160 0.060 0.232 0.156 0.228 0.108 0.479 0.409 0.310 0.210 

𝑋6 0.133 0.066 0.148 0.078 0.198 0.141 0.173 0.105 0.457 0.367 0.290 0.213 

𝑋7 0.135 0.071 0.108 0.055 0.186 0.121 0.205 0.118 0.428 0.320 0.243 0.178 

𝑋8 0.123 0.060 0.118 0.070 0.163 0.115 0.173 0.108 0.443 0.341 0.233 0.183 

 
 

Table 9. Estimated Power of the test for balanced, Moderately Unbalanced and Severely 
Unbalanced for 3-category response for NHD and HD cases using PMD-SPC 

 

 Balanced Moderately Unbalanced Severely Unbalanced 

 NHD HD NHD HD NHD HD 
Va Prop Base Prop Base Prop Base Prop Base Prop Base Prop Base 

𝑋1 0.765 0.671 0.740 0.668 0.639 0.548 0.619 0.519 0.657 0.583 0.586 0.514 

𝑋2 0.542 0.364 0.535 0.370 0.456 0.317 0.445 0.298 0.526 0.431 0.478 0.385 

𝑋3 0.340 0.171 0.310 0.196 0.386 0.243 0.308 0.213 0.480 0.356 0.471 0.358 

𝑋4 0.225 0.113 0.240 0.196 0.268 0.176 0.243 0.120 0.418 0.316 0.365 0.265 

𝑋5 0.164 0.075 0.143 0.068 0.264 0.174 0.203 0.128 0.376 0.281 0.354 0.268 

𝑋6 0.178 0.073 0.133 0.050 0.233 0.159 0.170 0.103 0.360 0.288 0.343 0.273 

𝑋7 0.142 0.065 0.140 0.073 0.208 0.143 0.180 0.098 0.355 0.288 0.343 0.278 

𝑋8 0.129 0.058 0.108 0.063 0.218 0.154 0.192 0.136 0.341 0.271 0.316 0.240 

 
 

3.2.2 Estimated Power using GAS-PCA 
 
For the dichotomous and 3-category response variable n=p, the test is powerful in 

detecting the significant predictors in all scenarios compared to the baseline test. 
 

Table 10. Estimated Power of the test for balanced, Moderately Unbalanced and Severely 
Unbalanced for dichotomous and 3-category response for NHD case using GAS-PCA 

 

 Balanced Moderately Unbalanced Severely Unbalanced 

 2-cat 3-cat 2-cat 3-cat 2-cat 3-cat 
Va Prop Base Prop Base Prop Base Prop Base Prop Base Prop Base 

𝑋1 0.950 0.930 0.959 0.942 0.929 0.883 0.908 0.877 0.829 0.744 0.887 0.804 

𝑋2 0.889 0.768 0.918 0.809 0.849 0.748 0.807 0.669 0.720 0.595 0.831 0.695 

𝑋3 0.765 0.565 0.783 0.624 0.675 0.470 0.746 0.591 0.603 0.467 0.755 0.612 

𝑋4 0.652 0.444 0.606 0.426 0.587 0.386 0.579 0.421 0.505 0.404 0.665 0.578 

𝑋5 0.450 0.220 0.389 0.187 0.333 0.192 0.370 0.210 0.404 0.253 0.487 0.322 

𝑋6 0.370 0.250 0.337 0.161 0.330 0.155 0.321 0.240 0.412 0.289 0.464 0.335 

𝑋7 0.330 0.180 0.265 0.153 0.276 0.184 0.390 0.222 0.424 0.323 0.480 0.359 

𝑋8 0.303 0.192 0.385 0.215 0.290 0.190 0.373 0.250 0.360 0.270 0.421 0.274 

 
 
 
 
 



Page 11 
of 26 

 

4. SUMMARY AND CONCLUSIONS 
  

Variable selection is conducted for high dimensional discrete choice data. Previous 
studies have shown that by using PCA and SPCA, the discrete choice model of Abe (1999) could 
be extended for high dimensional data. The study resulted in high predictive ability on both PCA 
and SPCA. The proposed test focuses on the variable selection of high dimensional discrete 
choice data using PMD-SPC and GAS-PCA. Both methods utilize SPCA as a dimension 
reduction and variable selection tool. The selected variables are then subjected to test for 
significance and further tested for false discovery rate using the Benjamini-Hochberg Procedure. 
Power and size were computed and the average rejection of the BH procedure for the not truly 
significant predictors were reported. 

 
 The simulation showed that the proposed test is somehow correctly sized only in 

balanced cases. In all unbalanced cases, the proposed test is always incorrectly sized. Even 
though the test is incorrectly sized, the baseline test is also incorrectly sized and the proposed 
method showed a comparable size compared to the baseline test. 

 
The result of the simulation shows that the proposed test is found to be more powerful 

than the baseline test across different parameters and number of variables involved.   
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