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ABSTRACT 

In this study, an appropriate forecasting method for the Philippine inflation rate was determined. 
Specifically, the forecasting performance of the Autoregressive Integrated Moving Average (ARIMA) model 
and Singular Spectrum Analysis (SSA) were compared. The dataset on monthly inflation rate was divided into 
two samples, the in-sample data and out-of-sample data. These samples were analyzed and after application 
of the Box-Jenkins approach, the resulting seasonal model is ARIMA(1,1,0)×(0,0,1)12. This model has the 
least AIC among all tentative models and the behavior of its residuals and forecast errors are satisfactory. 
SSA was also applied on the same samples and the most appropriate window length for the trajectory matrix 
is 25. In reconstructing the series, 10 eigentriples under three groups were used. The first group contains the 
trend component while the second and third groups contain the oscillatory components. Based on the 
computed in-sample and out-of-sample RMSE, SSA outperforms the ARIMA model. Thus, SSA is better than 
ARIMA in forecasting the Philippine inflation rate based on the sample data set. 

 

1. Introduction  

Studying and analyzing the inflation rate is of economic importance because low inflation 
rate is indicative of the drop in consumer demand, a sign of a broader financial problem, and harming 
sales figures for it encourages individuals and business to postpone purchases. A high inflation rate 
impairs individuals and companies purchasing power and harms economies (Adam, 2016). Doloriel, 
Salvaleon, Ronquillo, and Estal, (2014) signified the forecasting of inflation rate for many reasons: 
(a) it guides economic policymakers in their policy-decision making; (b) it gives baseline reference 
for owners and business administrators in their financial projections; and (c) workers impute inflation 
forecasts help determine wages that they ask from their employers. 

In the Philippines, several studies have been conducted on the inflation rate. Mariano (1985) 
used regression analysis in forecasting monthly inflation as measured by the changes in the 
Consumer Price Index (CPI). Mariano, Dakila, and Claveria (2003) also constructed a structural 
long-term annual macroeconomic model for inflation.  A generalized autoregressive conditionally 
heteroskedastic (GARCH) models for forecasting the volatility of Philippine inflation was developed 
by Ramon (2008).  Medalla and Ferno (2013) utilized an autoregressive-moving-average and 
generalized autoregressive conditional heteroskedastic (ARMA-GARCH) models for describing the 
inflation rate. Doloriel et al. (2014) investigated the trend and projected the volatility of Philippine 
inflation using fractal analysis. Among several methods performed on Philippine inflation rate, one 
approach that has not been utilized, at least based on the current studies considered, is Singular 
Spectrum Analysis (SSA). 

Golyandina, Nekrutkin, and Zhigljavsky (2001) defined Singular Spectrum Analysis (SSA) as 
“a relatively new non-parametric approach for analyzing time series data which incorporates 
elements of classical time series analysis, multivariate statistics, multivariate geometry, dynamical 
systems and signal processing and is very useful in the prediction of non-stationary time series.” 
Methods for modeling and forecasting time series such as auto-regressive moving average (ARMA) 
models suffer from parametric restrictions (stationarity and normality). Although the transformation 
of a non-stationary series by differencing or detrending is possible, a large amount of information is 
lost by such data transformation. SSA does not depend on any parametric model for the trend or 
oscillations and does not make any assumptions about the signal or the noise component of the 
data (Hassani, Soofi, & Zhigljavsky, 2013). 
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Review on the literature of SSA showed that there are more than a hundred papers on the 
application of SSA in different areas and, in most of them, SSA is superior compared to other time 
series analysis techniques (Mahmoudvand, Alehosseini, & Rodrigues, 2015). Also, recent 
developments in the theoretical and methodological aspects of SSA from the perspective of 
analyzing and forecasting economic and financial time series showed that SSA could be considered 
a suitable technique for predicting inflation rate (Hassani & Thomakos, 2010). 

The application of the Box-Jenkins approach and SSA methods to the Philippine Inflation 
rate are compared and evaluated in this study and the most accurate method was used to forecast 
monthly inflation rate for the years 2019 to 2020. 
 

2. Methods 

The data in this study contains the monthly inflation rate of the Philippines using the 2012-
based Consumer Price Index (CPI). The data on monthly inflation rate was retrieved from the PSA’s 
website. The monthly inflation rate data ranges from January 2013 to December 2018. A total of 72 
observations were used in the analysis. An in-sample dataset of 58 observations (January 2013 to 
October 2017) was used for Box-Jenkins approach in model development. The same set of 
observations was used for the decomposition and reconstruction stages of Singular Spectrum 
Analysis (SSA). The remaining 14 observations (November 2017 to December 2018) served as the 
out-of-sample dataset. This sample was used for forecast evaluation. 

To find an appropriate ARIMA model, the Box-Jenkins approach was used. The Box-Jenkins 
approach are divided in three stages, namely, model identification, model estimation, and diagnostic 
checking (Box and Jenkins, 1976). In addition, forecast evaluation was also performed to check if 
forecast errors are satisfactory.  

In model identification stage, the stationarity of the series is checked by examining the time 
series plot. A formal test (Augmented Dickey-Fuller test) is also performed on the data. Differencing 
is performed if the series is not stationary. Given a stationary time series data, the Autocorrelation 
Function (ACF) and Partial Autocorrelation Function (PACF) plots are obtained. These plots are 
used as basis in the identification of tentative models. Among the tentative models obtained, the 
model that has the smallest Akaike Information Criterion (AIC) value is selected for estimation. 

In the model estimation stage, the unknown parameters of the selected model are estimated. 
The combination of conditional sum of squares and maximum likelihood estimation is employed to 
estimate the parameters of the chosen model. 

After the estimation process, the adequacy of the selected model is assessed and evaluated. 
Residual analysis is performed. Ideally, the residuals of an adequate model should behave like a 
Gaussian white noise process. In performing residual analysis, no patterns should be observed. 
Ljung-Box test is also performed, and the p-value should be large enough to conclude that the model 
is adequate. ACF and PACF plots of the residuals are also constructed and there must be no spikes 
in these values. 

In addition, out-of-sample forecasts is considered in evaluating the performance of the 
model. The difference between the actual values and the forecast values at time 𝑡 are called forecast 
errors. The ACF and PACF plots of these forecast errors are examined for significant values. A 
normality test is performed on the forecast errors. This test determines if the assumption of normally 
distributed forecast errors is reasonable. 

The procedure for Box-Jenkins approach is summarized in Figure 1. 
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Figure 1. Box-Jenkins Flowchart 
 

Singular Spectrum Analysis is composed of two stages. Specifically, the procedure involves 
decomposition and reconstruction stages (Golyandina et al., 2001).  

Under the decomposition stage, a series 𝑁 was embedded into a trajectory matrix by 

choosing an appropriate window length 𝐿 where 1 < 𝐿 < 𝑁/2 and Singular Value Decomposition 
(SVD) was performed on the trajectory matrix. This process results into 𝐿 eigentriples and 
elementary matrices. 

In the reconstruction stage, the elementary matrices were summed into a smaller number of 
groups called the resultant matrices that represent different underlying aspects of the time series 
and combine the various components. These components are typically the ‘trend’ components, 
which are smooth parts of the series that show long-term variance, the various ‘oscillatory’ 
components that indicate periodicities in the time series and finally the largely undesired ‘noise’ 
components. The process of combining the matrices into different groups or subsets is known as 
the eigentriple grouping. Groups were determined through the help of analyzing the scree plot of the 
singular values and the percent of contribution of each eigentriple. An eigentriple is considered as 
noise if the percent of contribution is low (e.g., less than 0.05%). Also, the separability between 
noise and signal was determined via the w-correlation plot. Once the individual components of the 
time series have been separated into the relevant groups, the original time series was reconstructed 
with a smaller number of components. This was done by performing diagonal averaging on the 
matrices resulting from the summation of the relevant products in each of the groups. 

The steps under Singular Spectrum Analysis are summarized in Figure 2. 
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Figure 2. Singular Spectrum Analysis Flowchart 

 
In determining the most accurate method, the root mean square error (RMSE) was utilized. 

RMSE was computed for both Box-Jenkins approach and Singular Spectrum Analysis and was the 
basis for comparison. The method with the least RMSE was considered as best in terms of 
forecasting performance.  
 

3. Results and Discussion 

 
Figure 3 shows the time series plot of the monthly inflation rate in the Philippines from 

January 2013 until December 2018. During the years 2013 to 2014, inflation rate is within the 
government’s average inflation target of 2% to 4%. Low inflation can be seen during the first quarter 
of 2015 until the last quarter of the same year. There is a gradual increase from 2016 until the first 
quarter of 2018 but it is still within the government’s average inflation target. High inflation started in 
the second quarter of 2018 until the middle of quarter three and a gradual decrease started in the 
4th quarter of 2018. 

The series seems to be nonstationary. There are irregular peaks and troughs with no 
consistent trend. Furthermore, its variance appears to be constant. 

 
Figure 3. Time Series Plot of Monthly Inflation Rate 
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 Upon application of the Box-Jenkins approach to the data. The data was transformed through 
first order differencing to achieve stationarity. Stationarity was determined using the Augmented 
Dickey-Fuller test. Tentative models were identified and considered upon careful examination of the 
ACF and PACF plots. Also, seasonal components for the model were considered since the ACF and 
PACF plots showed significant spikes at seasonal lags.  
 

 
Figure 4. ACF and PACF Plots the First Difference 

 
 

Among the tentative models in table 1, ARIMA(1,1,0)×(0,0,1)12 was chosen since it has the 
least AIC value and its parameters are significantly different from zero.  

 
 
 

      Table 1. Tentative ARIMA Models 

Model 
Model 
Term 

Estimate 
Standard 

error 
z-value p-value AIC Value 

ARIMA(0,1,1)×(0,0,1)12 MA(1) 
SMA(1) 

0.309 
-0.999 

0.117 
0.469 

2.639 
-2.132 

0.008 
0.033 

21.16 

ARIMA(1,1,0)×(0,0,1)12 AR(1) 
SMA(1) 

0.339 
-0.999 

0.124 
0.509 

2.735 
-1.961 

0.006 
0.049 

20.43 

ARIMA(1,1,1)×(0,0,1)12 AR(1) 
MA(1) 

SMA(1) 

0.329 
0.010 
-0.999 

0.335 
0.348 
0.508 

0.986 
0.029 
-1.968 

0.324 
0.976 
0.049 

22.43 

 
Residual plots of the model are shown in figure 5. The residuals showed that there is no 

observable structure in the plot of residuals versus order. The plot of residuals versus fitted values 
is also structureless. Some of the residuals are far from the theoretical line. This is an indication that 
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the residuals are not normally distributed. However, in general, the behavior of the residuals is still 
satisfactory.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Residual Plots 

The model’s performance was also evaluated by examining the forecast errors and its 
forecast errors behave like a Gaussian white noise process and implies that the model is adequate.  

 
Under the Singular Spectrum Analysis, the window length 𝐿 is the only parameter in the 

decomposition stage. The choice of the window length 𝐿 is based on the following: 𝐿 should be large 
enough but not greater than half of a series or 1 < 𝐿 < 𝑁/2. 

The out-of-sample root mean squared error (RMSE) were computed for different values of 𝐿 

(see Table 2). For each 𝐿, the number of eigentriples 𝑟 was determined based on its percent of 
contribution. That is, an eigentriple was dropped if the percent of contribution is lower than 0.05%. 
Among different values of 𝐿 and 𝑟, a window length 𝐿 of 25 with 𝑟 of 10 reported the least RMSE 
value. 
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                                             Table 2. SSA Parameter Combinations 

L r RMSE (out-of-sample) 

28 11 5.12333 

27 11 3.69589 

26 10 1.02821 

25 10 1.01322 

24 10 1.08574 

23 10 1.28077 

22 10 1.49280 

21 9 4.05266 

20 9 4.15623 

19 9 3.92895 

18 9 3.67928 

17 8 1.55733 

16 8 1.71723 

15 8 3.69013 

14 7 3.91772 

13 7 3.88818 

12 7 3.28714 

11 6 3.35588 

10 6 3.88910 

9 7 2.63037 

8 7 2.60364 

7 6 4.81758 

6 5 2.56361 

5 4 3.11883 

4 3 2.72732 

3 2 2.53457 

2 1 2.15485 

 
 
The monthly inflation rate data was embedded into an (𝐿 × 𝐾) trajectory matrix with window 

length 𝐿 =  25 and 𝐾 =  34.This trajectory matrix was decomposed using Singular Value 
Decomposition (SVD). This process results in 25 eigentriples and 25 elementary matrices 
𝑋1, 𝑋2, … , 𝑋25.  
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Figure 6: Scree Plot of Singular values 

 

Figure 7. 𝑊-correlation Plot 
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The scree plot of the singular values or components of the decomposed trajectory matrix is 
shown in Figure 6. The “elbow” or “shark break” is the key in the scree plot. The components before 
the “elbow” are the important ones. In the figure, an “elbow” or “shark break”, can be seen at 
component 11. This indicates that the significant components are from 1 to 10 only. 

The 𝑤-correlation plot was also used to determine groupings as shown in Figure 7. The 𝑤-
correlation plot suggest that eigentriples 1 until 10 are the only significant eigentriples. This means 
that these eigentriples are enough to reconstruct the decomposed series. The shade of each square 
represents the strength of the 𝑤-correlation between two eigentriples. 

The 𝑤-correlation plot showed for this case that the first eigentriple is uncorrelated with the 
other eigentriples. This means that the first eigentriple (F1) is considered as the first group. The 
second (F2) and third (F3) eigentriples are highly correlated and are considered as the second 
group. The fourth (F4) until the tenth (F10) eigentriples are correlated and is considered as the last 
group. The eigentriples (from 11 to 25) can be associated to the inherent noise of the series. 

Each group is a resultant matrix 𝑋𝐼. Group 1 (F1) is the resultant matrix 𝑋𝐼1
, group 2 (F2 and 

F3) is 𝑋𝐼2
 and group 3 (F4 to F10) is 𝑋𝐼3

. Diagonal averaging was performed on each resultant matrix. 

The first group represents the trend component and the second and third group represent the 
oscillatory components. Combining all the groups, the reconstructed series was used to forecast. In 
this study, recurrent forecasting algorithm was used. 

 
 The two methods were compared based on their in-sample RMSE and out-of-sample RMSE. 
For both the in-sample and out-of-sample forecasts, the method with the smallest overall RMSE is 
Singular Spectrum Analysis (see Table 3). Hence, SSA outperformed ARIMA in terms of forecasting 
performance. 
                                Table 3. RMSE of ARIMA and SSA 

Model 
RMSE 

(In-sample) 
RMSE 

(Out-of-sample) 

ARIMA(1,1,0)×(0,0,1)12 0.22631 2.61352 
SSA (L=25, r =10) 0.09736 1.01322 

 
Table 4 shows the forecasted values of SSA. The 95% confidence intervals are also included 

in the said table. 
The forecasted values as shown in Table 4 exhibits fluctuating characteristics. This is an 

indication that the monthly inflation rate will continue to fluctuate in the future. Most of the forecasted 
values are outside the government’s target of 2% to 4% inflation. However, upon considering the 
confidence interval, there is still a possibility that future values will be within the target. That is, the 
lower limits meet the government target. 
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   Table 4. Forecasted Values 

Year Month Forecast 
Lower 95% Confidence 

Interval 
Upper 95% Confidence 

Interval 

2019 January 5.27 4.68824 6.18835 
2019 February 5.48 4.31763 7.09613 
2019 March 5.61 4.16414 7.51100 
2019 April 5.31 3.58165 7.08463 
2019 May 4.60 3.02226 6.52903 
2019 June 3.91 2.34205 5.68684 
2019 July 3.68 1.57154 6.44166 
2019 August 4.05 1.08013 7.88897 
2019 September 4.62 0.88252 8.55115 
2019 October 4.92 0.87329 8.16493 
2019 November 4.80 1.37914 8.07280 
2019 December 4.59 1.96272 7.70301 
2020 January 4.76 2.41468 7.79095 
2020 February 5.38 2.66729 9.33829 
2020 March 6.07 3.07584 10.22512 
2020 April 6.31 3.43859 9.78401 
2020 May 5.94 3.71362 9.23585 
2020 June 5.41 3.72147 9.11229 
2020 July 5.27 3.87464 9.48572 
2020 August 5.69 4.14099 11.74887 
2020 September 6.26 3.82312 12.86765 
2020 October 6.41 3.47471 12.04029 
2020 November 5.88 3.09269 11.12080 
2020 December 5.09 2.81583 10.96086 

 

 
Conclusion/s and Recommendations 

 
The comparison of ARIMA and SSA in this study showed that SSA is superior in terms of 

forecasting performance. Hence, between these methods, SSA is a more appropriate forecasting 
method for Philippine inflation rate. 

 
Based on the results and conclusions, the following recommendations are made. 

1. The choice of SSA window length 𝐿 in this study is very subjective. However, there are recent 
studies and new algorithms of SSA (e.g., Circulant SSA), that may improve the results of the 
analysis. Hence, this study also suggests utilizing them and compare the results herein. 

2. Policy makers and economic managers can use the results of this study as basis for 
economic policies and fiscal programs that try to control inflation within normal levels.  

3. Business owners and administrators can use the forecasted inflation rate as baseline 
reference for financial projections. This will help in their strategic plans and business 
operation. 

4. Other forecasting methods may also be considered and compare the results in this study. 
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