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Introduction

1. Economists are interested on when and how effects policy measures (pertain 

to taxation, government budgets, the money supply and interest rates, labour

market, national ownership, etc.) will fully occur. 

2. Dependent variables often react to changes in one or more of the 

explanatory variables only after a lapse of time. This delayed reaction 

suggests the inclusion of lagged explanatory variables into the specification 

of the model, resulting in a dynamic model.



Introduction

Lagged effects arise from different reasons. 

1. Psychological – behavior is often based on inertia and habit, and expectation 

about future events are often based on past behavior. 

2. Institutional – it takes time to respond to external events and certain rules 

lead to lagged responses. 

3. Technical – production requires time, and durable goods last more than one 

period.

An economic example might be dividend payments by a corporation (𝑌𝑡). This 

dependence is not only on earnings in the present period (𝑋𝑡) but also on 

earnings in previous periods. 



Introduction

The general form of a linear distributed lag model (DLM) is

𝑌𝑡 = 𝜙 +

𝑖=0

∞

𝛼𝑖𝑋𝑡−𝑖 + 𝜖𝑡

where 𝜙 is a constant term, 𝜖𝑡 is the error term such that 𝜖𝑡~𝑁 0, 𝜎𝜖
2 , 𝑡 =

1, 2, …, and any change in 𝑋𝑡 will affect 𝐸[𝑌𝑡] in all the later periods. 

The term 𝛼𝑖is the 𝑖th reaction coefficient, and it is usually assumed that 

lim
𝑖→∞

𝛼𝑖 = 0 and 

𝑖=0

∞

𝛼𝑖 = 𝛼 < ∞.



Reviews about Structural Change in Time Series Models

1. Supe, A. (1996) – when modeling time-series data, parameters are assumed 

not to vary with time, but there are instances that model parameters also 

change after some specific time points. 

2. Western, B. et. al (2004) – studied on a Bayesian model that treats the 

changepoint in a time series as a parameter to be estimated. In this model, 

inference for the regression coefficients reflects prior uncertainty about the 

location of the change point.

3. Park, J. H. et. al (2007) – introduced an efficient Bayesian approach to the 

multiple changepoint problem and discuss the utility of the Bayesian 

changepoint models in the context of generalized linear models. 



Reviews about Structural Change in Time Series Models

4. Chaturvedia, A. et. al (2012) – considered the Bayesian analysis of a linear 

regression model involving structural change, which may occur either due to 

shift in disturbances precision or due to shift in regression parameters.

5. Cabactulan, F. (2014) – showed a Bayesian analysis procedure of estimating 

the parameter of the Koyck distributed lag model. His formulation of the 

posterior distribution of the parameters of the said model was done by kernel 

density identification on the resulting expression of the joint posterior distribution 

of the sample and the parameters. 



The Distributed Lag Model

The general form of a linear distributed lag model (DLM) is

𝑌𝑡 = 𝜙 +

𝑖=0

∞

𝛼𝑖𝑋𝑡−𝑖 + 𝜖𝑡 .

Koyck suggested a simplification of the model and expressed as follows:

𝑍𝑡 = 𝛽0 + 𝛽𝑋𝑡 + 𝑢𝑡

where 𝑍𝑡 = 𝑌𝑡 − 𝜆𝑌𝑡−1, 𝛽0 = 1 − 𝜆 𝜙 and 𝑢𝑡 = 𝜖𝑡 − 𝜆𝜖𝑡−1.



The Distributed Lag Model

The structural change model to be considered is

𝑍𝑡 = ቊ
𝛽0 + 𝛽1𝑋𝑡 + 𝑢𝑡 , 𝑡 = 1, 2, … , 𝜈
𝛽0 + 𝛽2𝑋𝑡 + 𝑢𝑡, 𝑡 = 𝜈 + 1,… . , 𝑛

(1)

where 𝑍𝑡 = 𝑌𝑡 − 𝜆𝑌𝑡−1, 𝛽0 = 1 − 𝜆 𝜙, 𝛽2 = 𝛽1 + Δ, Δ > 0 and 𝑢𝑡 = 𝜖𝑡 − 𝜆𝜖𝑡−1.



Posterior Probability Distribution of the Break Point

Theorem: If the model (1) holds and 𝜈, Β, and 𝜏 are unknown, and if 𝜈 is uniformly 

distributed over 1, 2, … , 𝑛, the joint prior distribution of Β and 𝜏 is such that: the 

conditional distribution of Β given 𝜏 is normal with mean Β∗ and precision matrix 

𝜏−1𝐈 𝜏 > 0 where 𝐈 is a given 𝑛 × 𝑛 identity matrix and Β∗ is a 4 × 1 constant vector, 

the prior distribution of 𝜏 is gamma with parameters 𝑎 > 0 and 𝑏 > 0, and 𝜈 is 

independent of Β, 𝜏 then the posterior distribution of 𝜈 given the sample observation 

(𝑿, 𝒁) is

where



Structural Change when 𝜎2 = 1

1. Exact detection is made 

only when 𝛽2 is twice 𝛽1.

2. Interval estimates (HPP 

near 𝜈) consistently 

captures the break point. 

As change from 𝛽1 to 𝛽2
increases, point 

estimates improve while 

interval estimates give 

100% capture of the 

break point.



1. From the table below, 𝜈 = 6 gives a probability of .4986 while 𝜈 = 5 gives a 

posterior probability of .3935. Thus the point estimate is 𝜈∗ = 6 but HPP 

near 𝜈 includes 𝜈 = 5, the actual break point. 

2. It is a pattern in the succeeding results that the point estimate HPP at 𝜈
tends to identify a value of 𝜈 which is one lag after the break point. This is 

because from the structure of the model, complete change in the model 

occurs after one lag.



1. As 𝛽2 goes 

farther away from  

𝛽1, the structural 

change in the 

model becomes 

easier to 

distinguish and the 

posterior 

probabilities tend 

to flock near 𝜈, the 

break point.



1. Detection at 

the exact 

break point is 

hardly attained 

when we 

increase the 

sample size n 

to 50.



1. Break points are 

detected after one 

lag and can be seen 

in the posterior 

distribution of 𝜈. 

2. Full change can be 

detected after one 

lag because of the 

nature of the model 

which includes 

lagged variable. The 

interval estimate 

HPP near 𝜈
consistently 

captures the break 

point.



1. As 𝛽2 goes 

farther away from  

𝛽1, the structural 

change in the 

model becomes 

easier to 

distinguish and 

the posterior 

probabilities tend 

to flock near 𝜈, 

the break point.



Structural Change when 𝜎2 = 2. 

1. The point estimate of the 

break point 𝜈 (HPP at 𝜈) 

hardly detects the 

simulated break point 

when 𝜎2 = 2 as 

compared to the 

detection when 𝜎2 = 1.

2. However, the highest 

posterior probability is 

attained after one lag, so 

the interval estimate will 

contain the simulated 

break point.



1. When the error 

variance is increased from 

𝜎2 = 1 to 𝜎2 = 2, the 

detection of the exact 

value of the break point is 

consistently not attained. 

However, the detection is 

one lag after the exact 

break point. This implies 

that the change in 

variance from 1 to 2 does 

not change the fact that 

the detection is attained 

after one lag of the point 

𝜈. 



Posterior 
Distributions

Posterior 

distribution of 𝜈 for 

data based on

𝜙 = 0.2, 𝜆 = 0.3, 

𝜷𝟎
∗ = 𝟎. 𝟏𝟒, 𝝈𝟐 = 𝟏, 

and Δ = 1.0



Posterior 
Distributions

Posterior 

distribution of 𝜈 for 

data based on

𝜙 = 0.2, 𝜆 = 0.3, 

𝜷𝟎
∗ = 𝟎. 𝟐𝟎, 𝝈𝟐 = 𝟏, 

and Δ = 1.0



Posterior 
Distributions

Posterior 

distribution of 𝜈 for 

data based on

𝜙 = 0.2, 𝜆 = 0.3, 

𝜷𝟎
∗ = 𝟎. 𝟏𝟒, 𝝈𝟐 = 𝟐, 

and Δ = 1.0



Posterior 
Distributions

Posterior 

distribution of 𝜈 for 

data based on

𝜙 = 0.2, 𝜆 = 0.3, 

𝜷𝟎
∗ = 𝟎. 𝟐𝟎, 𝝈𝟐 = 𝟐, 

and Δ = 1.0



Summary and Conclusion

1. In a Koyck distributed lag model which undergoes structural change, the 
highest posterior probability is generally attained at 𝜈 + 1, which is one lag 
after the simulated break point. This is due to the fact that the model 
includes lagged variable that gives delayed reaction to the dependent 
variable.

2. The interval estimate HPP near 𝜈 consistently and efficiently captures the 
real value of the break point  in the interval HPPt ± 5% of n.

3. When the error variance is increased from 𝜎2 = 1 to 𝜎2 = 2, the detection of 
the exact value of the break point is consistently not attained. However, the 
detection is one lag after the exact break point. This implies that the change 
in variance from 1 to 2 does not change the fact that the detection is attained 
after one lag of the point.
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