BAYESIAN ESTIMATION OF THE GJR-GARCH (p, q) MODEL

By

Resa Mae R. Sangco and Arnulfo P. Supe

Presented by Resa Mae R. Sangco

Homoscedasticity - the variance of the error terms is constant across all observations.

Heteroscedasticity - the variance of the error terms changes over time or across observations.

Volatility is the rate at which the price of a security increases or decreases. It is measured by calculating the standard deviation of the annualized returns over a given period of time.

Volatility Example:

Date

Jan-2008

Oct-2011

Aug-2013

□Robert Engle in 1982 developed the Autoregressive Conditional Heteroskedastic (ARCH) model.

$$h_t = \alpha_0 + \sum_{i=1}^q \alpha_i u_{t-1}^2$$

☐ Tim Bollerslev(1986) called Generalized Autoregressive Conditional Heteroskedastic (GARCH) model.

$$h_t = \alpha_0 + \sum_{i=1}^{q} \alpha_i u_{t-1}^2 + \sum_{j=1}^{p} \beta_j h_{t-j}$$

□ Nelson in 1991 presented an alternative way to the GARCH model by modifying it to Exponential GARCH (EGARCH) model.

$$\log(h_t) = \alpha_0 + \beta \log(h_{t-1}) + \alpha \left| \frac{\varepsilon_{t-1}}{(h_t)^{1/2}} \right| + \gamma \frac{\varepsilon_{t-1}}{(h_t)^{1/2}}$$

Glosten, Jagannathan and Runkle (1993) GJR-GARCH model:

$$h_t = \alpha_0 + \sum_{i=1}^q (\alpha_i \mathbb{I}_{\{u_{t-i} \ge 0\}} + \alpha_i^* \mathbb{I}_{\{u_{t-i} < 0\}}) u_{t-i}^2 + \sum_{j=1}^p \beta_j h_{t-j}$$

where $\alpha_0 > 0$;

$$\alpha_i \ge 0 \ (i = 1, \dots, q);$$

$${\alpha_i}^* \ge 0 \ (i = 1, ..., q);$$
 and

$$\beta_i \ge 0 \ (j = 1, ..., p)$$

☐ Maximum Likelihood estimates are known to be statistically effecient but due to its complexity of the computations, maximum likelihood has become less practical use in estimation.

☐ According to Engle (1982), the normality assumption of the error terms may not be appropriate in some applications since heavy tails are commonly observed in economic and financial data.

Bayesian Estimation

- θ is a random variable (has an unknown distribution)
- Inference uses both data and prior information

$$Posterior = \frac{Likelihood \ x \ prior}{\int (Likelihood \ x \ prior)}$$

Frequentist

- θ is fixed and unknown
- Inference uses data only

OBJECTIVES:

- To provide estimates of the GJR-GARCH (*p*, *q*) model with student-*t* distribution error.
- To compare the classical Maximum Likelihood estimates to the estimates of Bayesian Estimation using GJR-GARCH (p, q) with student-t error distribution.

SIMULATION RESULT

- The parameters $\alpha_i(i=0,1,...,q)$, $\alpha_i^*(i=1,...,q)$, $\beta_j(j=1,...,p)$ and v was preset to obtain the simulated data with sample sizes 100, 500, 1000, 2500 and 5000.
- For each MCMC simulation, two chains were run with 5,000 iterations for each chain. The burn-in period was set to 2,500 for each chain. This implies that the first 2,500 iterations from each chain were disregarded. Hence, a total of 5,000 values of the chain were considered as samples from the true posterior density of the parameters.

	Parameter	True Value	Mean I	Estimate	MSE	
			Bayesian	MLE	Bayesian	MLE
GJR-	$lpha_0$	0.02	0.01924274	0.13637984	0.000000581	0.06398750
GARCH(2,2)	α_1	0.06	0.11737537	0.0491917	0.003293397	0.00239422
	α_2	0.04	0.10452251	0.04209486	0.004164276	0.00193570
	${\alpha_1}^*$	0.04	0.10442038	0.1132863	0.004151485	0.31536200
	${lpha_2}^*$	0.05	0.10028100	0.1467286	0.002529252	0.42630420
	eta_1	0.1	0.16316498	0.1981398	0.003991120	0.08145582
	eta_2	0.2	0.27862504	0.2382006	0.006183625	0.08373277
	v	7	7.02848963	7.5999792	0.000847804	3.48191700

	Parameter	True Value	Mean l	Estimate	MSE	
			Bayesian	MLE	Bayesian	MLE
GJR-	α_0	0.02	0.01924274	0.13637984	0.000000581	0.06398750
GARCH(2,2)	α_1	0.06	0.11737537	0.0491917	0.003293397	0.00239422
	α_2	0.04	0.10452251	0.04209486	0.004164276	0.00193570
	${lpha_1}^*$	0.04	0.10442038	0.1132863	0.004151485	0.31536200
	${\alpha_2}^*$	0.05	0.10028100	0.1467286	0.002529252	0.42630420
	eta_1	0.1	0.16316498	0.1981398	0.003991120	0.08145582
	eta_2	0.2	0.27862504	0.2382006	0.006183625	0.08373277
	v	7	7.02848963	7.5999792	0.000847804	3.48191700

	Parameter	True Value	Mean I	Estimate	MSE	
			Bayesian	MLE	Bayesian	MLE
GJR-	α_0	0.02	0.01924274	0.13637984	0.000000581	0.06398750
GARCH(2,2)	α_1	0.06	0.11737537	0.0491917	0.003293397	0.00239422
	α_2	0.04	0.10452251	0.04209486	0.004164276	0.00193570
	${lpha_1}^*$	0.04	0.10442038	0.1132863	0.004151485	0.31536200
	α_2^*	0.05	0.10028100	0.1467286	0.002529252	0.42630420
	eta_1	0.1	0.16316498	0.1981398	0.003991120	0.08145582
	eta_2	0.2	0.27862504	0.2382006	0.006183625	0.08373277
	v	7	7.02848963	7.5999792	0.000847804	3.48191700

	Parameter True Value		Mean I	Estimate	M:	SE
			Bayesian	MLE	Bayesian	MLE
GJR-	α_0	0.02	0.01924274	0.13637984	0.000000581	0.06398750
GARCH(2,2)	α_1	0.06	0.11737537	0.0491917	0.003293397	0.00239422
	α_2	0.04	0.10452251	0.04209486	0.004164276	0.00193570
	α_1^*	0.04	0.10442038	0.1132863	0.004151485	0.31536200
	${\alpha_2}^*$	0.05	0.10028100	0.1467286	0.002529252	0.42630420
	eta_1	0.1	0.16316498	0.1981398	0.003991120	0.08145582
	eta_2	0.2	0.27862504	0.2382006	0.006183625	0.08373277
	v	7	7.02848963	7.5999792	0.000847804	3.48191700

	Parameter	True	Mean I	Mean Estimate		SE
		Value	Bayesian	MLE	Bayesian	MLE
GJR-	$lpha_0$	0.02	0.0174743	0.02986668	0.00000637	0.00070621
GARCH(2,2)	α_1	0.06	0.03960772	0.06190507	0.00041603	0.0004070
	α_2	0.04	0.0429258	0.03347098	0.00000873	0.00059193
	${lpha_1}^*$	0.04	0.0431264	0.06588245	0.00000997	0.03590558
	${lpha_2}^*$	0.05	0.0383348	0.13779299	0.00013624	0.21125680
	eta_1	0.1	0.1230772	0.20761569	0.00053374	0.04678681
	eta_2	0.2	0.3159739	0.12274574	0.01345109	0.03560983
	v	7	7.0002337	7.07707675	0.00000345	0.46705380

	Parameter	True	Mean I	Mean Estimate		SE
		Value	Bayesian	MLE	Bayesian	MLE
GJR-	α_0	0.02	0.0174743	0.02986668	0.00000637	0.00070621
GARCH(2,2)	α_1	0.06	0.03960772	0.06190507	0.00041603	0.0004070
	α_2	0.04	0.0429258	0.03347098	0.00000873	0.00059193
	${lpha_1}^*$	0.04	0.0431264	0.06588245	0.00000997	0.03590558
	${lpha_2}^*$	0.05	0.0383348	0.13779299	0.00013624	0.21125680
	eta_1	0.1	0.1230772	0.20761569	0.00053374	0.04678681
	eta_2	0.2	0.3159739	0.12274574	0.01345109	0.03560983
	v	7	7.0002337	7.07707675	0.00000345	0.46705380

	Paramete	True Value	/alue Mean Estimate		MSE	
	r		Bayesian	MLE	Bayesian	MLE
GJR-	$lpha_0$	0.02	0.02284653	0.12959452	0.00000812	0.0574080
GARCH(1,2)	$lpha_1$	0.05	0.20776956	0.04999872	0.02489699	0.0073399
	$lpha_2$	0.08	0.25090539	0.08268486	0.02921679	0.0130662
	${\alpha_1}^*$	0.07	0.11608007	0.04052928	0.00212457	0.4514425
	${\alpha_2}^*$	0.05	0.16612480	0.18013963	0.01348762	0.4101193
	eta_1	0.4	0.36421032	0.49100089	0.00128541	0.1506002
	ν	7	7.1998996	8.12046272	0.0401654	7.0418080

GJR- GARCH(1,2)	α_0	0.02	0.0268218	0.03964822	0.00004653	0.00279226
	$lpha_1$	0.05	0.07580281	0.04689258	0.00066615	0.00071402
	α_2	0.08	0.05499345	0.08547741	0.00062571	0.00143607
	${\alpha_1}^*$	0.07	0.0573692	0.23549212	0.00015976	0.20274810
	${\alpha_2}^*$	0.05	0.06235970	0.05499876	0.00015305	0.09042198
	eta_1	0.4	0.25001016	0.40068787	0.02249732	0.03023907
	ν	7	7.1672520	7.17929480	0.02798094	0.85707670

Figure 1 GJR-GARCH(1,1) Bayesian and Classical Estimates for α_1

Conclusion

The study shows that the Bayesian estimation of the GJR-GARCH (p, q) model with student-t distribution provides a better estimates than the classical Maximum Likelihood estimation.

End of Presentation

