

BAYESIAN ESTIMATION OF A-PARCH MODEL: AN APPLICATION TO JOLLIBEE FOOD CORPORATION STOCK MARKET

By

Shane Marigold L. Oliveros, MSc and Arnulfo P. Supe, PhD

Presented by
Shane Marigold L. Oliveros, MSc
DSWD – Field Office VII

BAYESIAN ESTIMATION OF A-PARCH MODEL WITH STUDENT'S *t*-DISTRIBUTED INNOVATIONS

The Asymmetric Power Autoregressive Heteroscedasticity (A-PARCH(p,q)) model of the error terms y_t with Student's t-distributed innovations ϵ_t can be written using data augmentation as

$$y_{t} = \epsilon_{t}(\sigma h_{t})^{\frac{1}{2}}$$

$$\epsilon_{t} \sim N(0,1)$$

$$\omega_{t} \sim IG\left(\frac{v}{2}, \frac{v}{2}\right)$$

$$\sigma = \frac{v-2}{v}$$

$$h_{t}^{\frac{\delta}{2}} = \alpha_{0} + \sum_{i=1}^{p} \alpha_{i}(|y_{t-i}| - \gamma_{i}y_{t-i})^{\delta} + \sum_{i=1}^{q} \beta_{i}h_{t-j}^{\frac{\delta}{2}}$$

The following are the proposed priors for α , β , and γ :

$$p(\boldsymbol{\alpha}) \propto N_{p+1}(\boldsymbol{\alpha}|\boldsymbol{\mu}_{\boldsymbol{\alpha}}, \boldsymbol{\Sigma}_{\boldsymbol{\alpha}}) I_{(\boldsymbol{\alpha}>0)}$$
$$p(\boldsymbol{\beta}) \propto N_{q}(\boldsymbol{\beta}|\boldsymbol{\mu}_{\boldsymbol{\beta}}, \boldsymbol{\Sigma}_{\boldsymbol{\beta}}) I_{(\boldsymbol{\beta}\geq0)}$$
$$p(\boldsymbol{\gamma}) \propto N_{p}(\boldsymbol{\gamma}|\boldsymbol{\mu}_{\boldsymbol{\gamma}}, \boldsymbol{\Sigma}_{\boldsymbol{\gamma}}) I_{(|\boldsymbol{\gamma}|<1)}.$$

The approximate likelihood function of (α, β, γ) is

$$L(\boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\gamma} | \boldsymbol{y}) = |\Lambda|^{-\frac{1}{2}} exp \left\{ -\frac{1}{2} \boldsymbol{z}' \Lambda \boldsymbol{z} \right\}.$$

The construction of the posterior (proposal) densities for α , β , and γ will be based on this likelihood function.

Based on the approximate likelihood function of (α, β, γ) and the prior densities of the parameters α , β , and γ , and using the Bayes' theorem, the following are the posterior (proposal) densities of the parameters α , β , and γ :

For α :

$$\pi(\boldsymbol{\alpha}|\boldsymbol{y}) \propto exp\left\{-\frac{1}{2}(\boldsymbol{\alpha} - \widehat{\boldsymbol{\mu}}_{\alpha})'\widehat{\Sigma}_{\alpha}^{-1}(\boldsymbol{\alpha} - \widehat{\boldsymbol{\mu}}_{\alpha})\right\}$$
$$\propto N(\widehat{\boldsymbol{\mu}}_{\alpha}, \widehat{\Sigma}_{\alpha})I_{(\alpha>0)}$$

For β :

$$\pi(\boldsymbol{\beta}|\boldsymbol{y}) \propto exp\left\{-\frac{1}{2}(\boldsymbol{\beta} - \widehat{\boldsymbol{\mu}}_{\boldsymbol{\beta}})'\widehat{\Sigma}_{\boldsymbol{\beta}}^{-1}(\boldsymbol{\beta} - \widehat{\boldsymbol{\mu}}_{\boldsymbol{\beta}})\right\}$$
$$\propto N(\widehat{\boldsymbol{\mu}}_{\boldsymbol{\beta}}, \widehat{\Sigma}_{\boldsymbol{\beta}})I_{(\boldsymbol{\beta} \geq 0)}$$

For γ :

$$\pi(\boldsymbol{\gamma}|\boldsymbol{y}) \propto exp\left\{-\frac{1}{2}(\boldsymbol{\gamma} - \widehat{\boldsymbol{\mu}}_{\boldsymbol{\gamma}})'\widehat{\Sigma}_{\boldsymbol{\gamma}}^{-1}(\boldsymbol{\gamma} - \widehat{\boldsymbol{\mu}}_{\boldsymbol{\gamma}})\right\}$$
$$\propto N(\widehat{\boldsymbol{\mu}}_{\boldsymbol{\gamma}}, \widehat{\Sigma}_{\boldsymbol{\gamma}})I_{(|\boldsymbol{\gamma}| > 0)}$$

The prior density of ω is given by

$$f(\boldsymbol{\omega}|v) \propto \prod_{t=1}^{T} \omega_t^{-\frac{v}{2}-1} exp\left\{\frac{-v}{2\omega_t}\right\}$$

and its likelihood function is given by

$$L(\boldsymbol{\omega}|\boldsymbol{y}) \propto \prod_{t=1}^{T} \omega_{t}^{-\frac{1}{2}} exp\left\{-\frac{1}{2}\left(\frac{y_{t}^{2}}{\omega_{t}\sigma h_{t}}\right)\right\}.$$

Hence, by Bayes' theorem, the joint posterior density of ω is given by

$$\pi(\boldsymbol{\omega}|\boldsymbol{y}) \propto \prod_{t=1}^{T} \omega_t^{-\frac{v+1}{2}-1} exp\left\{\frac{-\tilde{v}_t}{2\omega_t}\right\}$$

which is the kernel of an inverse gamma density with parameters $\frac{v+1}{2}$ and $\tilde{v}_t = \frac{y_t^2}{\sigma h_t} + v$.

Following Deschamps' (2006) choice of the prior density of the degrees of freedom parameter v, the translated exponential density with parameters $\mu > 0$ and $\lambda \geq 0$ and is given by

$$f(v) = \mu e^{-\mu(v-\lambda)}$$

is used. The joint density of the vector $\boldsymbol{\omega} = (\omega_1, ..., \omega_T)'$ conditional on v is

$$f(\boldsymbol{\omega}|v) = \left(\frac{v}{2}\right)^{\frac{Tv}{2}} \left[\Gamma\left(\frac{v}{2}\right)\right]^{-T} \prod_{t=1}^{T} \omega_t^{-\frac{v}{2}-1} exp\left\{\frac{-v}{2\omega_t}\right\}.$$

Thus, the posterior (proposal) density of v is

$$\pi(v|\boldsymbol{\omega}) \propto \left(\frac{v}{2}\right)^{\frac{Tv}{2}} \left[\Gamma\left(\frac{v}{2}\right)\right]^{-T} exp\{-\varphi v\}$$

where
$$\varphi = \frac{1}{2} \left[\sum_{t=1}^{T} \left(\frac{1}{\omega_t} + \ln \omega_t \right) \right] + \mu$$
.

APPLICATION TO REAL DATA

TABLE I: Descriptive Statistics of the JFC Return Series

	Statistic	p-value
Sample Size	1692	
Minimum	-10.48796	
Maximum	9.40701	
Mean	0.05819	
Standard Deviation	1.81376	
Skewness	0.00972	
Kurtosis	2.84917	
Jarque-Bera Test for Normality	577.75	< 2.2 x 10 ⁻¹⁶ *
Augmented Dickey-Fuller Test for Stationarity	-13.285	0.01*
Box-Pierce Test for Serial Correlation	34.083	5.282 x 10 ⁻⁹ *
Ljung-Box Test for Heteroscedasticity	34.143	5.121 x 10 ⁻⁹ *

- * on the p-value implies rejection of the null hypothesis H₀.
- Augmented Dickey-Fuller Test H₀: The series is not stationary.
- Jarque-Bera Test H₀: The series is normally distributed.
- Box-Pierce Test H₀: The series has no serial correlation.
- Ljung-Box Test H₀: There is no ARCH effect present in the series.

Fig. 1. Historical Plot of the JFC Return Series

Fig. 2. Correlogram of the ACF and PACF of JFC **Return Series**

Selection of ARIMA(p,d,q) Model

selection of AktiwiA(p,a,q) whose	Model	AIC
TARLE II: Comparison of the Candidate Maan Madale	ARMA(1,0)	6787.09
ABLE II: Comparison of the Candidate Mean Models	ARMA(0,1)	6784.51
4 th National	ARMA(1,1)	6770.72

Fig. 3. Residual Plot

TABLE III: Diagnostics in the Mean Model Residuals

	Statistic	p-value
White Noise Test	15.883	0.02621*
Ljung-Box Test for Heteroscedasticity	57.335	3.675 x 10 ^{-14*}
Jarque-Bera Test for Normality	537.88	< 2.2 x 10 ⁻¹⁶ *

- * on the p-value implies rejection of the null hypothesis H₀.
- Ljung-Box test is performed on the squared residuals of the mean model.
- White Noise Test H₀: The residuals follow a white noise behavior.
- Ljung-Box Test H₀: There is no ARCH effect present in the series.
- Jarque-Bera Test H₀: The series is normally distributed.

Selection of A-PARCH(p,d,q) Model

Fig. 4. Correlogram of the ACF and PACF of Squared Residuals

TABLE IV: Bayesian Estimates of the ARMA(1,1) – A-PARCH(1,1) with Student's *t*-distributed Innovations Parameters

	—
Parameter	Estimates
ϕ_1	0.29589
θ_1	-0.46822
α_0	0.18483
α_1	0.18401
γ_1	0.31214
eta_1	0.74935
δ	0.79492
ν	5.01306

Fig. 5. One-Step Ahead Forecast of JFC Returns

