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1. Introduction 
 

The Department of Health (DOH) of the Philippines and supporting agencies are 
unyielding in our battle with vector-borne diseases. In 2018, DOH recorded decreasing morbidity 
rates of Malaria. Most affected areas are those with remote basic health services. Opportunely, 
DOH is now geared towards the elimination of the disease rather than prevention and control.  

  
 On the other hand, Philippines is recording high morbidity and mortality rates due to 
dengue fever. DOH (2019) declared last month a national dengue epidemic for there were 
146,062 cases recorded from January to July this year. This is higher than recorded cases during 
the same period last year. The highly affected provinces were Western Visayas, CALABARZON 
and Central Visayas (IFRCRCS, 2019). 
 
 Another disease caused by mosquitoes which is under the surveillance of DOH is 
chikungunya. The disease has no known cure at the moment and all medications are focused on 
dismissing the symptoms (WHO, 2017). Most cases were found in provinces of Romblon, Aurora, 
Zambales, Batangas and Laguna within the first half of 2017. Aedes species mosquito is also the 
vector of Zika virus which causes a disease similar to influenza and accompanied by conjunctivitis 
(DOH, 2016).  
 

According to WHO (2017), although vector-borne diseases or VDB comprise 17% of all 
infectious diseases, it is estimated that 96 million cases are recorded annually all over the globe 
leading to more than 700,000 deaths per year. Nevertheless, WHO believes that mosquito-borne 
diseases such as malaria are preventable when prevention and control measures are in place.  

 
With all these recent statistics, there is a need to monitor VBD that have caused past and 

recent outbreaks and epidemic events. For a developing country like the Philippines, the key is to 
detect onset of such diseases during its early stage to halt mortality, spread and its impending 
effect to economy. Cure for certain diseases became less effective since microbes are evolving 
with the rapidly-changing world. Moreover, human migration, urbanization, trade of food, business 
of medicinal products, transformation of society, deforestation and alteration of the environment 
are evident. All these lead us to say that there is a need to thoroughly investigate the current 
situation of the Philippines. 

 
The idea of this study was to consider as many important factors as possible and associate 

them with each other and eventually assess their effect on the spread of mosquito-borne diseases 
and susceptibility of different locations. In this study, different tools like statistical indices and 
mapping were utilized. Constructing an index as a measure of vulnerability results to a relevant 
and beneficial tool. Moreover, the index can also assess preparedness of our country during a 
mosquito-borne outbreak. Irregular and possibly massive outbreaks threaten national health 
security, so there is a need for a wide-ranging VBD vulnerability index. 
 



The general objective of this study was to determine the exposure of Philippine provinces 
to factors that make them vulnerable to VBD using a composite disease vulnerability index. 
Specifically, the study aimed to: 

 
1. determine provinces in the Philippines with high VBD vulnerability in terms of: 

a. demographic factors;  
b. economic factors; 
c. disease dynamics factors; 
d. public health and health care factors;  
e. infrastructure factors; and 
f. governance factors; 

 
2. determine provinces in the Philippines with high VBD vulnerability using a composite 

index produced by analytical hierarchy process (AHP); and 
 

3. assess validity of the constructed VBD vulnerability index. 
 
2. Methodology 
 

The population of the study was composed of the 79 provinces of the Philippines and 
Metro Manila (NCR) for a total of 80 units. The study excluded Davao Occidental in Region XI - 
Davao Region and Dinagat Islands in Region XIII – Caraga. Metro Manila (NCR) was counted as 
a separate unit.  
 

Series of steps was conducted in the construction of index, namely, 1) collection of 
indicator data, 2) imputation of missing data, 3) normalization of indicator data, 4) index 
construction, 5) uncertainty analysis of indices and 6) statistical mapping of indices. These steps 
were illustrated in Figure 2 and were briefly discussed below. Datasets on identified indicators in 
each dimension per province were collected and organized using Microsoft Excel and Stata. All 
analyses were facilitated under R for construction of indices and Stata for data management and 
preliminary analyses.  

 

 
Figure 1. Flowchart of data processing and analyses steps 

 This study employed stochastic multiple imputation to estimate missing indicator data of 
provinces with missing observations. This type of imputation is best in using all available 
information from variables or indicators with complete observations across provinces and use 
these information in constructing a Bayesian model that will estimate the missing observation. 
 
 For normalization, this study employed the normalization method used by Moore et al., 
(2016). The min-max normalization converts the raw observations into a scale of 0 to 1. Since 



indicators may have opposing directions, the normalization method differed between those 
indicators which are preferred to be high and indicators which are preferred to be low. Ultimately, 
normalization resulted to a value near 1 if the measure for the indicator was not favorable or near 
0 if the measure was favorable. 
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2.1 Analytic Hierarchy Process (AHP) 
 

This study used the analytic hierarchy process or AHP developed by Thomas Saaty in the 
1970s. The process starts with comparing by pair all factors involved. This comparison gives a 
score of 1 (equally important) to 9 (extremely important) to a factor depending on its importance. 
For instance, if comparison is done for all possible pairs of 4 factors, then a comparison matrix C 
for four factors can be constructed such as this.  
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 The weights of each factor which will be used for construction of the index are the elements 
of the normalized principal eigenvector of the comparison matrix which is called priority vector by 
AHP.  
 
 There are measures on how to assess if the comparison matrix is consistent in the sense 
that rating given to a pair of factors does not appear in conflict with other pair of factors in light of 
transitive property of comparisons (Teknomo, 2006). This study used consistency ratio (CR) 
which can be calculated by: 

=
CI
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where CR  is the consistency ratio, CI is the consistency index and RI  is the random 

consistency index. Consistency index measures the deviation from perfect consistency through 
this formula: 
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where λ  is the principal eigenvalue and p is the number of factors in the comparison matrix. On 

the other hand, random consistency index (RI) is the average consistency index of randomly 
generated comparison matrices involving p factors and, therefore, measures how inconsistent a 
comparison can be for a set of factors. This study used the RI’s of Franek and Kresta (2014) who 
provided their own simulation of 500,000 random comparison matrices. They came up with this 
set of RI’s.  
 

p 3 4 5 6 7 8 9 10 11 12 13 14 15 

RI 0.525 0.882 1.110 1.250 1.341 1.404 1.451 1.486 1.514 1.536 1.555 1.570 1.584 

  



A CR at most 0.10 means that there is small inconsistency and that the ratings are 
acceptable. Otherwise, the ratings should be revisited by transforming the ratings (Teknomo, 
2006 & Franek & Kresta, 2014) using the square root function. 

 
 Once all six dimension indices are constructed, these dimension indices were further 
aggregated into one composite vector-borne infectious disease vulnerability index using zero-

corrected geometric mean. The formula is stated below where j identifies the six dimensions 
for province i. 
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2.2 Robustness of VBD Vulnerability Index 
 

Composite indices, though useful in decision- and policy-making, are surrounded by 
uncertainties. Various sources of uncertainty need to be discussed. This study employed 
uncertainty analysis by investigating the changes in the composite index when an indicator is 
removed and when weight values are modified. To assess if the composite index is sensitive, the 
composite index was recalculated for each modification of a particular source. The interest was 
to compare the rank of the composite index across all units instead of comparing the actual index. 
Average difference between the original rank and the ranks after modification of a source of 
uncertainty can be calculated to examine the effect of modification done. This can be calculated 
by this formula (Nardo et al., 2005): 
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where Air  is the average absolute difference of rank for unit i, oir  is the original rank of unit i, 

jr  is the rank of unit i after modification and N  is the number of modifications done. 

  
 After modification and the resulting average absolute difference is far from zero, then this 
means that the composite index is sensitive to that particular modification. On the other hand, if 
the resulting average absolute difference is near zero, then this means that the composite index 
is not sensitive to the modification performed.  
 
 Removing an indicator. For this uncertainty analysis, an indicator was removed one at 
a time and the dimension index and composite index were recalculated. The resulting rank of the 

index for each removal was compared to the original rank. N  in this case was the total number 

of indicators which was 46. 
 

Modifying weight values. In this part of uncertainty analysis, the study investigated the 
extent of changes in the rank if weights of dimensions were modified. Modification took place for 
a single dimension only, that was, modifying one dimension left the other five dimensions in their 
original setting. This study used four weight modification schemes: 0%, 25%, 50% and 75% 
weight increments. Without modification, all indices were raised to 1/6 or 0.1667 due to sixth root 
operation.  0% weight increment basically disregarded one whole dimension leaving the other five 
dimensions at their original setting. For this, fifth root was used in the geometric mean of getting 
VBDVI since one dimension was eliminated. On the other hand, 25% weight increment added 



additional 25% to the original weight of 1/6 or 0.1667 making it 1/8 or 0.125. This awarded a 
dimension higher contribution to VBDVI by raising its dimension index to 0.125. To preserve sixth 
root, the other five dimension indices were raised to 7/40 or 0.175. Notice that increasing the 
contribution meant raising it to a lower value since indices were from 0 to 1. The formula for 25% 
weight increment was: 
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where X stands for the dimension with increased weight and Y stands for dimensions with reduced 
weights. For 50% weight increment, weight of inflated dimension was modified from 1/6 or 0.1167 
to 1/12 or 0.083 while weights of the other five dimensions were modified to 11/60 or 0.183. The 
formula was: 
 

( )
5

50 1112 60

1

  0 00001 0 00001 0 00001%

i X Y

Y

VBDVI DI . DI . .
=

 
= +  + − 

 
 

  

 
For 75% weight increment, weight of inflated dimension was modified from 1/6 or 0.1167 to 1/24 
or 0.042 while weights of the other five dimensions were modified to 23/120 or 0.192. The formula 
was: 
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 Since there were six dimensions and each had four modifications, there was a total of 24 
modifications for this uncertainty analysis.  
 
 Comparing the indices generated by the methodology to current situation of vector-
borne diseases. Previous analyses examined the effect of possible sources of uncertainty but a 
more definitive proof of how strong the indices are was resemblance to real condition. For this 
part, the indices as well as the statistical maps generated by constructed vector-borne disease 
indices were compared to morbidity and mortality rates of selected mosquito-borne diseases 

using leave-one-out cross validation (LOOCV). Ultimately, testRMSE  and trainingRMSE  were 

compared to each other. If the value of testRMSE  is near trainingRMSE , then the prediction is of good 

quality leading us to conclude that the index resembled the real condition of the provinces in terms 
of vector-borne infectious diseases 
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4. Results and Discussion 
 
4.1 Consistency of collected responses from experts 
 

Three experts from the field were requested to answer an online questionnaire where they 
compared the importance of each indicator per dimension towards assessing vulnerability of a 
province in vector-borne infectious diseases. Tabulated in Table 1 are the consistency ratios (CR) 
for each dimension. After combining their ratings, the official comparison matrices were found to 
be consistent as all consistency ratios were at most 0.07 which is lower than the 0.10 limit. We 
can therefore say that the experts performed formal judgement and subjective evaluation. 

 
Table 1. Consistency Ratios of Comparison Matrices per dimension. 

Dimension Expert A Expert B Expert C Comparison Matrix 

1 Demographic 0.18 0.08 0.11 0.07 

2 Economic 0.16 0.03 0.10 0.03 

3 Disease Dynamics 0.08 0.02 0.09 0.03 

4 PH and Healthcare 0.14 0.03 0.05 0.03 

5 Infrastructure 0.23 0.05 0.05 0.03 

6 Governance 0.20 0.08 0.00 0.04 

 
4.2 Demographic Dimension 
 

Table 2. Demographic indicators with high weights. 

Demographic Indicator Weight 

Percentage of persons living in urban areas 0.1990 

Population Density 0.1474 

Annual population growth rate 0.1415 
 

 In demographic dimension, large weights were given to percentage of persons living in 
urban areas and population density which showed the relevance of the number of persons living 
in an area. This supported studies suggesting the effect of population density in increasing 
conduciveness of an environment for spread of any infectious disease (Wise et al., 1998 & Fritzell 
et al., 2016). On the other hand, low weights were given to literacy rate and percentage of 
academic degree holder opposing the findings of some studies that control programs are effective 
and successful if population has high literacy to health(Moore et al, 2016, Dewalt et al, 2004 & 
Heymann, 2006). With these weights, AHP identified NCR (index = 0.5110) as the most 
vulnerable province demographically. NCR was followed by Maguindanao (index = 0.4247) and 
Rizal (index = 0.3710). Statistical map of demographic dimension in Figure 1 shows that 
vulnerable provinces were clustering in Central Luzon (Region 3), CALABARZON (Region 4A), 
central to eastern parts of Visayas, and in most parts of Mindanao. 



 
Figure 2. Most vulnerable provinces according to demographic factors using AHP. 

 
4.3 Economic Dimension 
 

Table 3. Economic indicators with high weights. 

Economic Indicator Weight 

Poverty incidence among families  0.2771 

Employment rate 0.2253 

Inflation rate 0.1627 

 
 Among economic indicators, large weights were given to poverty incidence among families 
and employment rate which reflect the financial capacity of the population. Decreased investment 
to health due to poor economic status of locations translates to poor access to healthcare. In 
return, programs to control infection-carrying mosquitoes have slow progress causing resurgence 
of vector-borne diseases. Economic dimension indices identified Lanao del Sur (index = 0.9183) 
as the most vulnerable province economically. Lanao del Sur was followed by Siquijor (index = 
0.7112) and Northern Samar (index = 0.7098). Figure 2 shows that vulnerable provinces could 
be seen clustering in the eastern part of the country specifically in Bicol Region (Region 5), 
Eastern Visayas (Region 8), and in most parts of Mindanao. 
 



 
Figure 3. Most vulnerable provinces according to economic factors using AHP. 

 
4.4 Disease Dynamics Dimension 
 

Table 4. Disease dynamics indicators with high weights. 

Disease Dynamics Indicator Weight 

Population per residential area 0.2369 

Total area with agricultural crops per hectare 0.2039 

Total annual rainfall 0.1876 

 
For disease dynamics dimension, large weights were given to population per residential 

area and total area with agricultural crops per hectare. Results supported studies stating that land 
use for agricultural activities affects zoonotic infectious diseases by increasing proximity of 
humans to natural reservoir of hosts (Eisenberg, et al., 2007, Morse, 1995 & Alto & Bettinardi, 
2013). On the other hand, low weights were given to variability of monthly mean temperature and 
humidity. This is in contrast with studies that have shown that seasonal and geographic 
differences in temperature and humidity affects the dynamics of the mosquito population as well 
as the pattern of disease transmission (Bai et al., 2013 & O’Meara et al, 2008). In this dimension, 
AHP categorized Isabela (index = 0.5731) as the most vulnerable province in terms of disease 
dynamics factors. The province was followed by Benguet (index = 0.5422) and Cagayan (index = 
0.5074). Figure 3 shows vulnerable provinces were clustering in most part of Luzon and central 
part of Mindanao. Isolated vulnerable provinces appear in central part of Visayas.  

  



 
Figure 4. Most vulnerable provinces according to disease dynamics factors using AHP. 

 
4.5 Public Health and Healthcare Dimension 
 

Table 5. Public health and healthcare indicators with high weights. 

Public health and healthcare Indicator Weight 

Number of private hospitals per population 0.1283 

Number of public hospitals per population 0.1245 

Number of medical doctors per population 0.1206 

 
 In terms of public health and healthcare indicators, large weights were given to number of 
private and number of public hospitals per population. This coincided with the findings in the study 
of O’Meara et al in 2008 where proximity of primary care services was considered as an important 
factor to malaria treatment and prevention (Levy & Meltzer, 2008). On the other hand, percentage 
of local citizens without PhiHealth registration in AHP received the lowest weight. The study of 
Levy and Meltzer in 2008 agrees to this as they mentioned that although health insurance helped 
improve health measures, there was no strong evidence in its association to health in general 
(Allen, 2015). With these weights, Lanao del Sur (index = 0.8765) was identified by AHP as the 
most vulnerable province under this dimension followed by Basilan (index = 0.8756) and Sulu 
(index = 0.8543). Figure 4 shows vulnerable provinces were clustering in the southern part of 
Luzon and central part of Visayas. Parts of Mindanao also had substantial share in the pool of 
vulnerable provinces.  
 



 
Figure 5. Most vulnerable provinces according to public health 

and healthcare factors using AHP. 
 
4.6 Infrastructure Dimension 
 

Table 6. Infrastructure indicators with high weights. 

Infrastructure Indicator Weight 

Percentage of national road length 0.1499 

Percentage of non-energized barangays 0.1322 

Percentage of national bridges length 0.1270 

 
Under infrastructure dimension, AHP gave large weights to percentage of national road 

length and percentage of non-energized barangays. These results showed that community 
infrastructures play a vital role. Roads allow easier and faster delivery of health products and 
services [24]. However, good transport system tolerates rapid movement of people which is also 
a factor for diseases to spread [12]. With the infrastructure dimension index, AHP identified 
Sarangani (index = 0.8124) as the most vulnerable followed by Compostela Valley (index = 
0.8107) and Apayao (index = 0.7743). Figure 5 shows vulnerable provinces were clustering in the 
central part of Luzon to some provinces of CALABARZON (Region 4A) and MIMAROPA (Region 
4B). Cluster of vulnerable provinces was also apparent in SOCCSKSARGEN (Region 12) and 
Davao Region (Region 11). 
 



 
Figure 6. Most vulnerable provinces according to infrastructure factors using AHP. 

 
4.7 Governance Dimension 
 

Table 7. Governance indicators with high weights. 

Governance Indicator Weight 

Good Governance index (GGI) 0.2828 

Competitiveness Index (CI) 0.2122 

Evacuation centers to population ratio 0.1957 

  
 Lastly, competitiveness index and good governance index appeared to be relevant under 
governance dimension. These indicators are all direct measurements of good governance which 
supports the hypothesis that good governance affects effectiveness of response to health threats 
[24, 42]. AHP identified Maguindanao (index = 0.8771) as the most vulnerable in this dimension 
followed by Masbate (index = 0.8683) and Basilan (index = 0.8601). Vulnerable provinces were 
clustering in most parts of Visayas as can be seen in Figure 6. Another visible cluster can be seen 
in the central part of Luzon to some provinces of CALABARZON (Region 4A) and MIMAROPA 
(Region 4B), Zamboanga Peninsula (Region 9), Northern Mindanao (Region 10), and Caraga 
Region. The least vulnerable province was Batanes (index = 0.4415). followed by Mountain 
Province (index = 0.5246). 
 

 



 
Figure 7. Most vulnerable provinces according to governance factors using AHP. 

 
4.8 Composite Vector-Borne Disease Vulnerability Index (VBDVI) 
 

Shown in Figure 8 are the deciles of VBDVI using AHP. Visible clusters of vulnerable 
provinces were prominent in Central Luzon (Region 3), CALABARZON (Region 4A), and Bicol 
Region (Region 5). This cluster extended up to Eastern Visayas (Region 8) and in most parts of 
Mindanao. Isolated provinces in higher deciles included Occidental Mindoro, Aklan, and Negros 
Occidental. Prominent cluster of least vulnerable provinces can be found in the northern part of 
Luzon. The 5 most vulnerable and 5 least vulnerable provinces are labeled in the map. 

 



 
Figure 8. Vulnerability of provinces according to VBDVI using AHP. 

 
 Listed in Table 8 are the 15 most vulnerable provinces and 15 least vulnerable provinces. 
Maguindanao, which was categorized as one of the most vulnerable provinces in five out of six 
dimensions had an VBDVI of 0.6142 making it the most vulnerable province against vector-borne 
infectious diseases. Following Maguindanao were Lanao del Sur (VBDVI = 0.5953), Cavite 
(VBDVI = 0.5562), Sulu (VBDVI = 0.5458), and Sarangani (VBDVI = 0.5447).  
 
 On the other hand, Batanes is the least vulnerable province. Its VBDVI is 0.3304. Though 
Batanes was noted as one of the most vulnerable provinces under disease dynamics dimension, 
the province was the least vulnerable province under economic, PH and healthcare and 
governance dimensions.  
 

Table 8. Fifteen (15) most and least vulnerable provinces using VBDVI from AHP. 

MOST VULNERABLE  LEAST VULNERABLE 

Rank Province Index  Rank Province Index 

1 Maguindanao 0.6142  66 Kalinga  0.4634 

2 Lanao del Sur 0.5953  67 Nueva Vizcaya 0.4626 

3 Cavite 0.5562  68 Quirino 0.4624 

4 Sulu 0.5458  69 Romblon 0.4619 

5 Sarangani 0.5447  70 Marinduque 0.4573 

6 North Cotabato  0.5428  71 Southern Leyte 0.4506 

7 Masbate 0.5385  72 Guimaras 0.4464 

8 Compostela Valley 0.5352  73 Bohol 0.4388 

9 Basilan 0.5281  74 La Union  0.4300 

10 Bukidnon 0.5232  75 Mountain Province 0.4266 



MOST VULNERABLE  LEAST VULNERABLE 

Rank Province Index  Rank Province Index 

11 Bulacan 0.5220  76 Ilocos Norte 0.4247 

12 Davao del Norte 0.5219  77 Siquijor 0.4238 

13 Camarines Sur 0.5206  78 Ilocos Sur  0.4237 

14 South Cotabato  0.5195  79 Abra 0.4191 

15 Camarines Norte 0.5187  80 Batanes 0.3304 

 
4.9 Robustness of composite VBDVI against influence of an indicator 
 

On the average, a given province may change its rank up to approximately two positions 
when an indicator was removed from the calculation (2.43 ± 1.31). There were events where 
ranking of provinces did not change even when an indicator was removed but there were also 
provinces that moved up to 6 positions, on the average.  
 
 Figure 9 shows the number of times out of 46 that a province retained its spot in the list of 
most vulnerable (Ranks 1 – 15) and least vulnerable (Ranks 66 - 80). Clearly, counts decreased 
dramatically going to the middle ranks suggesting that provinces which should be prioritized were 
classified as such by VBDVI even during removal of indicators.  
 

 
Figure 9. Provinces according to AHP rank with number of times the province was correctly 

classified after removal of an indicator. 
 
4.10 Robustness of composite VBDVI against modification of dimension weights 
 

On the average, a given province may change its rank up to approximately 4 (± 2.60) 

positions when dimension weights were modified. All changes were approximately at most 10 
positions, on the average. Disease dynamics dimension created varying rankings when its weight 
was changed. Eliminating demographic dimension in AHP resulted to an average of 10.28 change 
in ranking.  
 
 Figure 10 shows provinces arranged according to rank with counts signifying the number 
of times out of 24 that the province was categorized correctly. Evidently, most vulnerable and 
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least vulnerable provinces were classified as such by VBDVI even during modification of 
dimension weights. AHP methodology detected the most and the least vulnerable provinces. 
There were no provinces that were categorized reversely (going from most to least or vice versa) 
but there were provinces that had big jumps in their ranking. For instance, Cavite at rank 3 went 
down to rank 21 when disease dynamics dimension was eliminated (0% weight). 

 

 
Figure 10. Provinces according to AHP rank with number of times the province was correctly 

classified after modification of dimension weights. 
 
4.11 Robustness of composite VBDVI by comparing it to current situation of VBDs 
  

Table 9. Root Mean Square Errors (RMSE) of training and test data sets using LOOCV. 

Mosquito Disease RMSE TRAINING RMSE TEST % Error 

Malaria 0.1105845 0.1126754 1.89% 

Dengue HF 0.2203943 0.2258323 2.47% 

Filariasis 0.1286342 0.1305853 1.52% 

Chikungunya 0.1391988 0.1435773 3.15% 

 
 LOOCV showed that RMSE of test data set was acceptably low since values were very 
close to the RMSE of training data set. In fact, the highest percent error was only 3.15% with an 
average of 2.26%. With low percent errors, results suggested that the prediction of the actual 
vector-borne infectious disease rate was satisfactorily achieved by VBDVI. Since prediction was 
of good quality, we can therefore say that VBDVI had been sensitive enough to resemble the real 
condition of the provinces in terms of vector-borne infectious diseases.  
 

Shown in Figure 11 is the statistical map of VBDVI together with the map showing the 
normalized actual rates for malaria, dengue hemorrhagic fever, filariasis and chikungunya. For 
malaria, VBDVI captured the situation in northern parts of Luzon. However, most parts of 
Mindanao were categorized as vulnerable when in fact most provinces there had low malaria 
rates. In the case of dengue hemorrhagic fever (DHF), indices seemed to be closer to the actual 
scenario. VBDVI captured most vulnerable provinces in Mindanao. However, VBDVI seemed to 
have resulted to high indices even when the actual DHF rates was zero, which was almost the 
same scenario as that of the malaria rates. Non-zero filariasis rates were isolated in only nine 
provinces and this is clearly depicted in the map shown in Figure 11. VBDVI worked in capturing 

0

2

4

6

8

10

12

14

16

18

20

22

24

1 80

C
O

U
N

T

RANK



non-vulnerability of provinces in the northern part of Luzon. Outputs appeared to be better in the 
case of chikungunya rates. VBDVI captured the situation in central to southern parts of Luzon and 
in most parts of Visayas.  
 

AHP 

 
Actual Malaria Rates 

 

Actual DHF Rates 

 
Actual Filariasis Rates 

 

Actual Chikungunya Rates 

 
  

Figure 11. Comparison of VBDVI to normalized actual VBD rates. 



  
5. Conclusion and Recommendation 
 

Aggregating the dimension indices, VBDVI using AHP pointed out Maguindanao as the 
most vulnerable province with an index of 0.6142. It was followed by Lanao del Sur, Cavite, Sulu 
and Sarangani. Least vulnerable provinces, in the contrary, were Batanes followed by Abra, Ilocos 
Sur, Siquijor and Ilocos Norte. To validate the results, a series of uncertainty analyses was 
performed. Results somehow challenged the validity of VBDVI due to instances of big jumps in 
the ranking. Nonetheless, results showed that VBDVI appeared useful in classifying most 
vulnerable provinces.  
 
 Results of the study have shown that administrative boundaries of provinces do not serve 
as barriers for vector-borne diseases to spread. Actual rates and constructed indices showed 
clustering of vulnerable provinces implying that such diseases cannot be enclosed in certain 
provinces. A notable trend that can be deduced from the results was the fact that most vulnerable 
provinces were in Mindanao making the geographical area a potential hotspot of vector-borne 
diseases. Involved bodies can target governance, PH and healthcare and infrastructure for these 
dimensions were the weaknesses of this hotspot. On the other hand, most of the least vulnerable 
provinces were from Luzon which generally got lower economic dimension indices. This implied 
that strong and developed economy can keep a province safer from vector-borne diseases.  
 
 Though VBDVI was not constructed to directly predict outbreaks, it can give us 
comprehensive idea in identifying locations that needs practical and apt support. Actions might 
include targeting those indicators with high impact to vulnerability mentioned in the discussion. 
These include those pertaining to plans to solve overcrowding, projects to promote financial 
stability of families, health projects for those working in agricultural lands, construction of 
neighboring healthcare facilities, investment to communication technologies for easy 
dissemination of health information, and effective relay of information across government units. 
Moreover, other indicators with direct relation to vector-borne diseases can be added to improve 
VBDVI. This may include percentage of school children in the population, distribution of virus 
serotypes, feature-specific characteristics of houses in the community, sewage infrastructure 
status, number of children and women per household, presence of irrigation channels, dams and 
ponds in the community, presence of illegal settlers, and construction of unplanned urbanization.   
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