Does a DNA barcoding gap exist in bioactive marine bacteria?

Evidence from analyses of 16S rRNA gene sequence data of pigmented pseudoalteromonads

¹Arizaldo E. Castro, MSc and ²Ian Kendrich C. Fontanilla, PhD

¹Microbial Ecology of Terrestrial and Aquatic Systems Laboratory, Institute of Biology, College of Science, University of the Philippines Diliman

²DNA Barcoding Laboratory, Institute of Biology, College of Science, University of the Philippines Diliman

Background of the Study

Pseudoalteromonas spp.

- Marine, Gram -, Rod-shaped
- Non-pigmented & Pigmented
 - ✓ Anti-biofilm activity
 - ✓ Bactericidal activity
 - ✓ Quorum sensing inhibition

Background of the Study

16s rRNA gene sequencing

- OTU determination
- > Taxonomic assignment
- Phylogeny reconstruction
 - ✓ 3% sequence dissimilarity
 - Limited evidence of suitability to pigmented pseudoalteromonads

Research Objectives

- 1. Compare sequence divergence of pigmented *Pseudoalteromonas* species included in this *in silico* analysis;
- 2. Construct 16S rRNA gene trees to confirm and support the clustering of species that have been previously reported; and
- 3. Determine the presence of a DNA barcoding gap in pseudoalteromonads' 16S rRNA gene sequences.

Methodology

Data sources

- GenBank®
- 195 partial sequences
- 1000-1500 bp
- 2013-2017

Data treatment and analysis

jModelTest 2.1.10

- Sequence alignment
- Optimal model selection (*AIC)
- Test for data set saturation (*Xia test et al., 2003)

Gene tree construction

- Maximum Likelihood
- Maximum Parsimony
- 1000 replicates as bootstrap support

Gap determination

- Sequence divergence
- Frequency distribution of distances
- Barcoding gap determination

- 1. Alignment of 16S rRNA gene sequences, test for saturation, and optimal DNA substitution model
- 2. 16S rRNA gene sequence divergences among pigmented pseudoalteromonads
- 3. Gene trees of pigmented pseudoalteromonads
- 4. Absence of DNA barcoding gap in bioactive pseudoalteromonads

- 195 strains and isolates of pigmented pseudoalteromonads belonging to 13 species were included in the analyses.
 - The length of the aligned sequences was 1342 nucleotides.
 - Index of substitution saturation for 32 OTUs was significantly smaller than those for completely symmetrical and asymmetrical trees (0.041).
 - Optimal DNA substitution model chosen for the dataset is TPM2uf+G.

- Sequence divergences using average uncorrected distances of individuals within the same species were found to be less than 1% (0.98%) compared to genetic distances of individuals from different species, which were at 3.54%.
- Intraspecific genetic distances ranged from **0 to 0.140** while interspecific genetic distances ranged from **0 to 0.168**.

Maximum Parsimony
gene tree of pigmented
pseudoalteromonads
based on the 16s rRNA
gene

Maximum Likelihood
gene tree of pigmented
pseudoalteromonads
based on the 16s rRNA
gene

Conclusions and Recommendation

- Use of 16S rRNA gene sequence data alone in identifying potentially bioactive marine prokaryotes is not sufficient
 - ➤ Intra- and interspecific sequence divergences are small
 - Individuals from different species clustered in MP and ML trees (n=8/13)
 - ➤ No DNA barcoding gap in the 16S rRNA gene was detected
- Recommend use of multiple genes in taxonomic identification and phylogeny reconstruction of potentially bioactive marine prokaryotes such as pseudoalteromonads

