
dbdayta@up.edu.ph

Topic Modelling on Consumer-Generated 

Corpora
Automating Customer Relations Management with Text Analytics

By

Dayta, Dominic; Barrios, Erniel

School of Statistics, UP Diliman

Presented By:

Dayta, Dominic

MS (Statistics), UPSS



dbdayta@up.edu.ph

Agenda

1. Background

2. Topic Modelling, Latent Dirichlet Allocation

3. Initial Look Into The Data

4. Results

5. Current Challenges

6. Generalizations



dbdayta@up.edu.ph

Background | Big Data and Customer Feedback

• Service-oriented companies (e.g. restaurants, retailers) rely heavily on

feedback provided by their customers.

• Most (if not all) of these feedback come in the form of text: emails, text

messages, conversation transcripts (for called-in feedback).

• Two difficulties:

– Classifying and prioritizing highly manual, prone to error

– Statistical analysis limited to what can be transferred to structured form
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Background | Big Data and Customer Feedback

Case Study [Company XYZ]*

• Feedback received is received by agents at call center partner

• Agents manually read through verbatim feedback received and classify them

by: (1) business area concerned, (2) level of urgency

• Analysis team picks up structured data produced by agents for use in reports

*For legal concerns, the name of the company has been omitted. In subsequent slides, specific brand designations and

product terminologies will be replaced with dummy tokens.
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Topic Modelling | Making a Model that Reads

• An emerging field in analysis of unstructured big data, part of the bigger field

of text analytics or natural language processing

• Concerns methods that attempt to summarize or classify documents based

on word patterns and associations
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Topic Modelling | Making a Model that Reads

Topic modelling treats document features (words) as observable variables that

manifest under the influence of some higher, unobserved feature (topics) – as

latent variables.

Topic 1 Topic 2

Word 1 Word 2 Word 3 Word 4



dbdayta@up.edu.ph

Topic Modelling | Making a Model that Reads

The test of a first-rate intelligence is the ability to hold two opposed

ideas in the mind at the same time, and retain the ability to

function. (The Crack-Up, F. Scott Fitzgerald)

Possible topic: ability, skill



dbdayta@up.edu.ph

Topic Modelling | Making a Model that Reads

The test of a first-rate intelligence is the ability to hold two opposed

ideas in the mind at the same time, and retain the ability to

function. (The Crack-Up, F. Scott Fitzgerald)

Possible topic: measure, ranking



dbdayta@up.edu.ph

Topic Modelling | Making a Model that Reads

• Topic modelling aims to construct “topic structures”, i.e. distributions defining

the probability or likelihood of certain words appearing in a document having

a certain topic.
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Topic Modelling | The Vector Space Model
(Xing, 2012)

Approach natural language as vectors:

• Documents are interpreted as vectors of

word scores (counts, inv. freq, tf-idf)

• In this approach, order is ignored.

• Also called a “bag of words” approach

The test of a first-rate intelligence

is the ability to hold two opposed

ideas in the mind at the same

time, and retain the ability to

function.

Word Count

The 5

Ability 2

To 2

A 1

And 1

At 1

First 1

… …
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Topic Modelling | Latent Dirichlet Allocation
(Blei et al, JMLR 2003)

• Developed out of two previous topic modelling procedures: Latent Semantic

Indexing (LSI) and Probabilistic Latent Semantic Indexing (pLSI)

• Produces a generative model that describes how documents arise from

multiple topics

• Bayesian in flavor
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Topic Modelling | Latent Dirichlet Allocation
(Blei et al, JMLR 2003)

Some assumptions:

• Topics are independent of each other

(i.e., the expression of one topic cannot magnify or preclude the expression of another topic

within the same document)

• Documents exhibit multiple topics

• A topic is a distribution over a fixed set of vocabulary

At the same time, this is assumed to come before the document. A document arises out of the

admixing of topics.

• The number of possible topics is known in advance
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Topic Modelling | Latent Dirichlet Allocation
(Blei et al, JMLR 2003)

Modelling topics using LDA:

• Consider a word as a basic discrete unit. In a corpus, there are 𝑊 unique

words, 𝑤𝑖: 𝑖 ∈ 1,2,… ,𝑊

• A document is a corresponding sequence of words, denote as 𝒘𝑑 =
{𝑤1,𝑑 , 𝑤2,𝑑, 𝑤3,𝑑,…,𝑤𝑁,𝑑} from the first word 𝑤1 to the last 𝑤𝑁

• A corpus is a collection of documents 𝑫 = 𝒘1, 𝒘2, … ,𝒘𝑀
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Topic Modelling | Latent Dirichlet Allocation
(Blei et al, JMLR 2003)

Suppose the following: 𝐾 = number of topics, 𝛼 a positive 𝐾-dimensional vector,

and 𝜂 a scalar.

• For each topic, draw a distribution of words 𝛽𝐾~𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡 𝜂

• For each document,

– Draw a vector of topic proportions 𝜃𝑑~𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡 𝛼

– For each word draw a topic assignment 𝑍𝑑,𝑛~𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙 𝜃𝑑

– Draw a word 𝑤𝑑,𝑛~𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙 𝛽𝑧𝑑,𝑛
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Topic Modelling | Latent Dirichlet Allocation
(Blei et al, JMLR 2003)

Two particularly useful vectors produced by LDA

• 𝜃𝑑 gives the proportion of topics inside document 𝑑

• 𝛽𝑘 gives the probability of each word for topic 𝑘

• These values are estimated by integrating over the resulting posterior

probability distribution.

• Complexity of the distribution leads to usage of numerical methods, popularly

Gibbs Sampling.
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Topic Modelling | Latent Dirichlet Allocation
(Blei et al, JMLR 2003)

How many topics?

• The number of topics affects the overall interpretability of the model

• Cross-validate!

• Due to the probabilistic nature of the method, a likelihood can be computed

given a set number of topics. Choose the value that yields the highest

likelihood.
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Consumer Data | First Looks

• Period Covered: January, 2019

• Channels: E-mail, Texts, Verbatim feedback submitted through website

• Data covers complaints received by [Company XYZ] regarding products and

service in six brands, henceforth referred to as [Brand 1] to [Brand 6].

• Products are referred to as [Product p.q] where p is the brand designation, q is

product. Hence, [Product 1.2] is the second product mentioned for [Brand 1]



dbdayta@up.edu.ph

Consumer Data | First Looks

Processing the data introduced a number of challenges in cleaning.

Multilingual Texts

In general, complaints coming from the Philippines tend to be a mix of multiple

languages and forms – English, Filipino, slang, regional languages.
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Consumer Data | First Looks

Processing the data introduced a number of challenges in cleaning.

Lack of Formality in Writing

In general, Filipino writing exhibits a unique lack of formality. Words are

contracted, rules of punctuation are ignored, grammar and basic construction are

not observed.
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Consumer Data | First Looks

Most frequently used 

words. The corpus, in 

general, contains about 

1,439 unique words.
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Consumer Data | First Looks

Most frequently used 

words, minus stop words. 

Stop words are functional 

words in the language that 

have no contextual 

meaning.
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Consumer Data | First Looks

Complaints tend to be on the short side. On average, a complaint tends to be 

104 words long, where the shortest complaint was 9 words only, and the longest 

at 457 words.
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Results | Cross-Validation

Resulting inverse likelihoods (perplexity) for 2 to 31 topics. For the model, 15 

topics were chosen.
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Results | Topic Distribution 1

The first topic appears to concern, in order, the following words (with their 

corresponding importance value, 𝛽)

Top 10 Words

Time Disappointed Finally

Crew Talk

[Product 1.1] [Product 2.2]

Fan Window

Food Replace

[Product 2.1] Forgot
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Results | Topic Distribution 2

Meanwhile this topic appears to concern, in order, the following words (with their 

corresponding importance value, 𝛽)

Top 10 Words

Meal [Product 1.4]

[Brand 1] [Product 4.1]

[Product 1.2] Makati

Hotline Found

[Product 1.3]

Square
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Results | Topic Distribution 3

Meanwhile this topic appears to concern, in order, the following words (with their 

corresponding importance value, 𝛽)

Top 10 Words

Branch Hot Attention

Service [Product 1.5]

City Share

Minutes January

Customers Bad
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Results | Topic Distribution 4

Meanwhile this topic appears to concern, in order, the following words (with their 

corresponding importance value, 𝛽)

Top 10 Words

Eat sauce

Feedback Customers

Minutes Missing

PM 10

Food

Waiting
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Results | Topic Distribution 5

Meanwhile this topic appears to concern, in order, the following words (with their 

corresponding importance value, 𝛽)

Top 10 Words

Branch Line

Crew Shocked

Understand Incomplete

People Evening

Wait Counter

[Product 1.4] bag
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Current Challenges

• So far, the method demonstrated is in keeping with the bag of words 

approach to text data. Language, however, is highly relative. Future 

implementation may consider, instead, n-grams (sequences of n consecutive 

words)

• The bag of word approach is naïve to linguistic phenomenon, e.g. polysemy. 

Words like “shot” which carry different contexts (photography, guns, sports, 

etc)

• Scaling the idea to industry level requires sophisticated data cleaning 

procedure for language problems discussed
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Generalizations

• Companies and institutions can take advantage of emerging methods for text 

data to automate tedious data gathering processes related to customer 

feedback management

• Latent Dirichlet Allocation proves to be useful in automatically sifting through 

complaints according to subject

• Full implementation, however, requires some further thought into 

preprocessing, and scaling the method to industry size



dbdayta@up.edu.ph

End of Presentation

Thank You!


